
Working with pch2csd 1

Working with pch2csd – Clavia NM G2 to
Csound Converter

Gleb Rogozinsky1, Eugeny Cherny2 and Michael Chesnokov3,
1 The Bonch-Bruevich St.Petersburg University of Telecommunications, Russia

2 Åbo Akademi University, Finland
3 JSC SEC „Nuclear Physics Research“, Russia

gleb.rogozinsky@gmail.com

Abstract. The paper presents a detailed review on the pch2csd applica-
tion, developed for conversion of popular Clavia Nord Modular G2 syn-
thesizer patch format pch2 into a Csound-based metalanguage. The
Nord Modular G2 was one of the most remarkable synthesizers of late
90s. A considerable number of different patches makes Nord Modular
G2 to be a desirable target for software emulation. In this paper we de-
scribe the pch2csd work flow, including modeling approach, so the de-
veloper may use the paper as a starting point for further experiments.
Each model of Nord Modular's unit is implemented as an User-defined
Opcode. The paper gives an approach for modeling, including descrip-
tion of ancillary files needed for the correct work. First presented at the
International Csound Conference 2015 in St. Petersburg, the pch2csd
project continues to develop. Some directions for future developments
and strategic plans are suggested. The example of transformation of
Nord Modular G2 patch into the Csound code concludes the paper.

Keywords: Nord Modular G2, converter, metalanguage

1 Introduction

In this paper we give the report on the current state of the pch2csd project and
also describe the aspects of using our application. The pch2csd was first intro-
duced to the Csound community at the International Csound Conference 2015,
St. Petersburg Russia. At that time, the authors presented the results of their
first experiments on converting Clavia Nord Modular G2 (NM2) patches into
Csound code and demonstrated simple Csound code, automatically created as
an output of the converter [1].

The NM2 was a quite remarkable software-hardware modular synthesizer
from the late 90s. Its core is built on 4 DSPs and it is programmed via GUI
while being connected to the computer. Then programmed, it can run stand-
alone [2].

The NM2 patch consists of two main parts called voice part (VA) and global
effects (FX). The VA is a subject of polyphony, comparing to FX part. The

2 Gleb Rogozinsky et al.

greater the number of voices played simultaneously, the lesser number of mod-
ules can be used before overrun. NM2 uses fixed sampling rate of 96 kHz for au-
dio signals and 24 kHz for control rate signals. The overall number of modules is
around 200, including numerous generators, filters, mixers, switches, MIDI
units, logics, sequencers and some effects.

From the beginning the pch2csd code was written in C. At the present time
we are working at translating it to Python. Rewriting the converter in Python
made the code much simpler and easier to maintain, improved cross-platform
support, as well as provided better distribution through PIP. Prior to our work,
the NM2 patch format (pch2) had been already described by [3]. There were
also several projects related to alternative graphical interfaces for NM2 [4], [5].
Their repositories also include some useful data.

2 The pch2csd Work Flow

After the program starts the user is prompted to enter the valid path to pch2
file. The program checks the consistency of the following components: Csound
opcodes, mapping tables, and input-output tables. The program outputs check
results as a table to the terminal window. The output csd file is then created in
the program's working directory.

2.1 Modeling Approach

Each NM2 unit should have a corresponding Csound model, placed in the
/pch2csd/resources/templates/modules as a txt file with the module ID, i.e.
12.txt. The list of module IDs can be found in mod_type_name.json file. The
NM2 units are modeled as Csound UDOs. Csound compiler reads the code lines
from top to the bottom, which is completely different approach to graphical sys-
tem of patching. Fortunately, Csound has a zak-patching system. It provides a
given number of a-rate and k-rate buses to intercommunicate between different
instruments. Those two spaces are independent from each other, comparing to
NM2 patching system, where all cables are sequentially numbered. Comparing
to typical behavior of Csound opcodes, where each opcode typically accepts
some input data as some parameters and outputs the result(s), our zak-based
UDOs do not have any outputs. After parameter fields our UDOs have an IO
field, in which the numbers of buses in zak-space are listed.

Thus in our system we typically have

SomeOpcode aP1, kP2 [, ...], kIn1 [, ...], kOut1[, ...]

where aP1 and kP2 are some module parameters, kIn1 is a number of k- or a-
rate bus to read an input data from, and kOut1 is a number of some k- or a-rate
bus to send data to. Using described approach we are able to place the opcodes
in csd file in arbitrary order, just like NM2 user can.

Working with pch2csd 3

2.2 Values Mapping

Another important aspect is the values mapping. The NM2 modules have sever-
al different controller types of a number of ranges, i.e. audio frequency range,
amplitude range, normalized values in the range from 0 to 1, delay time ranges,
envelope stage durations, etc. The actual values of the controllers can be seen
only when using the software editor. The NM2 patch file stores 7-bit MIDI CC
values without any reference to the appropriate range. Thus we had to manually
copy all data types, ranges and values. The actual values can be found in
value_maps.json file. We use specially commented mapping lines, which start
with an @ symbol and list the tables to be used for each parameter of the mod-
ule. I.e 112.txt (LevAdd module) contains following lines:

;@ map s 2 LVLpos LVLlev
;@ map d BUT002

This means that the mapping table for the first parameter of LevAdd (the
constant value to add to the input signal) is dependent on a second (s 2) pa-
rameter, which is the two-state button (table BUT002). The button switches
LevAdd from unipolar to bipolar range of values. According to the choice, one of
two possible mapping tables is selected (LVLpos or LVLlev). The order of NM2
parameters are fixed. Each line of a mapping file relates to the corresponding
parameter of NM2 unit. The first symbol after keyword map marks whether the
parameter needs direct (d) mapping, i.e. its 7-bit MIDI CC value points to the
actual value in given table (i.e. BUT002 table), or the actual parameter value
depends on some selection (s). For the last option, there should be several possi-
ble mapping tables listed (LVLpos LVLlev) after the pointer to selector (2).
Typically each module starts from one or several mapping lines. The mapping
tables are stored in /pch2csd/resources/value_maps.json.

2.3 Polymorphism Issue

It should also be noted that several NM2 modules are polymorphous, i.e. k-rate
filter can turn into a-rate filter depending on a type of an input signal. Unfortu-
nately there is no direct indication of current module type in a pch2 file, so the
actual module type can be found only through analyzing of incoming cable con-
nections. Our algorithm checks the module type, and its input connections. In
case of non-default type of the input, the corresponding module twin is used in-
stead of the default one. As it mention above, the default module UDOs are
placed in Modules directory. The twins are placed in seludoM1 directory under
the same name.

1 Reverse of the word 'Modules'

4 Gleb Rogozinsky et al.

3 The Current State

We currently have 1002 of 182 modules implemented as Csound user-defined op-
codes and 36 mapping tables to map the values from the 7-bit ints to non-linear
parameter range. Storing the data as the text allows anyone to change the be-
havior of the modules without touching the code.

Most of implemented modules still need careful checking and improvements.
From the NM2 simulation side, most attention should be paid to generators. Al-
most every sound begins with the oscillator section, and the corresponding units
should be modeled first. The NM2 oscillators produce aliased waveforms at 96
kHz. The Figure 1 shows the amplitude spectra of Clavia’s sawtooth. We can
clearly see the aliasing part of the spectra, mirrored from the Nyquist frequency
(red line, 48 kHz). This feature of NM2 distinguishes it from the popular family
of analog-modeling synthesizers, which typically produce alias-free waveforms,
and makes it possible to simulate the corresponding waves by simple generation
of ideal piece-wise functions using GEN7. The authors have already implement-
ed most of the straight-forward modules, i.e. mixing operations, level, delay,
logics and switching. Though some of them still need some careful approach for
being as close as possible to their NM2 copies, i.e. NoiseGate and EnvFollower.

Fig. 1. Spectra of NM2 sawtooth wave.

 The main problem regarding envelopes is the NM2's ability to change the
envelope parameters during the run. This makes no use of Csound's typical so-
lutions based on linseg, expseg or transeg units. Filters are rather the question of
time, since their behavior should be carefully copied, i.e. through analysis of
white noise filtering.

2 Of which up to 20 modules so far have almost exact behavior as original NM2

Working with pch2csd 5

Another important goal we started working on recently is to make the project
hackable, so users would be able to easily modify module implementations to
contribute to the project or to modify sound for their own tastes. Our next pos-
sible to-do after providing a completely working solution is an integration with
some existing Clavia patch editor. It would actually establish the new Clavi-
a-based software modular system running on a Csound core. Also, the native
Csound developments, i.e. Cabbage Studio, seem very promising in the context
of further integration. Current pch2csd sources can be found on the GitHub [6].

Below we give an example of code for the NM2 patch on Fig.2. The patch
consists of three slightly detuned sawtooth oscillators, mixer, envelope unit, LP
filter and a simple delay in FX section.

Fig. 2. NM2 patch used for testing.

Orchestra Example3:
sr = 96000
kr = 24000
nchnls = 2
0dbfs = 1

zakinit 12, 4 ; establish z-space of 12 a- and 4 k-rate buses

opcode OscD, 0, iKi ; a simplified NM2 oscillator OscD model
iPitch, kFine, iOut xin
kfine = cent(kFine)
icps = cpsmidinn(iPitch)
aout oscili 1, icps*kfine, 1
zaw aout, iOut

endop

opcode Mix41B, 0, kkkkiiiii ; a NM2 4-1 mixer model
kLev1, kLev2, kLev3, kLev4, in1, in2, in3, in4, iout xin

a1 zar in1
a2 zar in2
a3 zar in3
a4 zar in4
aout = a1*kLev1 + a2*kLev2 + a3*kLev3 + a4*kLev4
zaw aout, iout

endop

3 Some ancillary code lines are intentionally omitted for the reasons of size

6 Gleb Rogozinsky et al.

opcode EnvDSimple, 0, kiii ; a simplified NM2 envelope generator
kH, iIn,iEnv,iOut xin
aIn zar iIn
kEnv expseg .00001,.001,1,i(kH),.00001
zkw kEnv, iEnv
zaw aIn*kEnv, iOut

endop

opcode FltLP, 0, ikkiii ; a simplified NM2 LP filter model
iOrder, kMod, kCF, in1, imod, iout xin
ain zar in1
kmod zkr imod
aout tonex ain, kCF+kmod*kMod, iOrder
zaw aout, iout

endop

opcode Out2, 0, ii ; a simplified NM2 Out2 model
iL, iR xin
aL zar iL
aR zar iR
outs aL, aR

endop

opcode DlySingleA, 0, kii ; a NM2 delay unit model
kTime, iIn, iOut xin
ain zar iIn
abuf delayr 1
aout deltap kTime
delayw ain
zaw aout, iOut

endop

instr 1 ; this is a VA part of NM2 patch
OscD 64, 24, 2
OscD 64, 0, 3
OscD 64, -27, 4
Mix41B 0.336, 0.781, 0.430, 0.781, 2, 3, 4, 0, 5
EnvDSimple 0.456, 5, 3, 6
FltLP 4, 2050,2090,6,3,9

endin
instr 2 ; this is a FX part of NM2 patch

DlySingleA 0.362, 9, 10
Out2 9,10

endin

Score Example:
f1 0 16384 7 0 8192 1 0 -1 8192 0
f2 0 16384 10 1
i1 0 [60*60*24*7]
i2 0 [60*60*24*7]

Working with pch2csd 7

References

1. Rogozinsky G., Cherny E., and Osipenko I.: Making mainstream synthesizers with
csound. In: Proceedings of the 3rd International Csound Conference, pp. 132–140. St.Pe-
tersburg (2016)
2. Sound On Sound article on Clavia Nord Modular G2, http://soundonsound.com/re-
views/clavia-nord-modular-g2
3. Michael Dewberry Home Page, http://www.dewb.org/g2/pch2format.html
4. NMG2 Open source editor, https://sourceforge.net/projects/nmg2editor/
5. G2Dev page, http://bverhue.nl/g2dev/?page_id=17
6. pch2csd GitHub page, https://github.com/gleb812/pch2csd

	2.1 Modeling Approach
	2.2 Values Mapping
	2.3 Polymorphism Issue

