
Daria: A New Framework for Composing,
Rehearsing and Performing Mixed Media Music

Guillermo Senna1 and Juan Nava Aroza2 ?

1 Universidad Nacional de Rosario
2 Universidad Nacional de Rosario

Abstract. In this paper we present a new modular software framework
for composing, rehearsing and performing mixed media music. By com-
bining and extending existing open-source software we were able to syn-
chronize the playback of the free Musescore music notation editor with
three VST audio effects exported using the Csound frontend Cabbage.
The JACK Audio Connection Kit sound server was used to provide a
common clock and a shared virtual timeline to which each component
could adhere to and follow. Moreover, data contained on the musical score
was used to control the relative position of specific Csound events within
the aforementioned timeline. We will explain the nature of the plugins
that were built and briefly identify the five new Csound opcodes that
the development process required. We will also comment on a generic
programming pattern that could be used to create new compatible VST
audio effects and instruments. Finally, we will conclude by mentioning
what other related software exists that can interact out-of-the-box with
our framework, how instrument players and computer performers can
simulate the performance experience while practicing their correspond-
ing parts at home and what our future plans for this software ecosystem
are.

Keywords: Mixed media music, Musescore, Csound, Cabbage, JACK.

1 Introduction

The aim of this paper is to present a new modular framework for composing, re-
hearsing and performing mixed media music. The pedagogical method presented
by Lluán et al. [1] inspired us to build a new open-source alternative to their
proposed system. By modifying and extending the free Musescore music nota-
tion editor [2], as well as by designing a series of VST effects with the Csound
frontend Cabbage [3,4], we were able to build a more open and flexible substi-
tute. The JACK Audio Connection Kit sound server [5] was used for providing
a common clock and a shared virtual timeline and the software Carla [6] was
chosen as our preferred VST host. As a result every component of this project
is not only open-source, but also multiplatform.

? We would like to gratefully thank Professor Claudio Lluán for his continued support
and guidance.



2 Guillermo Senna and Juan Nava Aroza

A short musical fragment and three new VST audio effects were created for
demonstrating the capabilities of our system. Although not yet available for its
first stable release, all the code that pertains to this project, including forked
and modified third-party repositories, is now publicly available [7].

The synchronization between the music notation editor and Csound was
achieved by developing a new Musescore plugin and a single VST (the Con-
ductor) for controlling the transport part of the audio server. The two other
VST audio effects mentioned earlier will serve us to showcase a common pro-
gramming pattern for triggering Csound events that are required to be kept in
sync with the shared timeline.

2 A Brief Overview of the Plugins

2.1 The Musescore Plugin

A new Musescore plugin was developed using the QML markup language. When
called, this plugin first inspects the musical score and stores the time cues where
each new measure starts. The resulting collection of values is sent to the Con-
ductor using the OSC protocol.

For testing purposes, we used the musical score represented in Figure 1. The
synchronization between the music notation editor and the Conductor plugin is
considered essential for this system to work. Consequently, this communication
should not be omitted while working on new musical pieces.

Fig. 1. A short musical fragment used to test our system.

A Javascript function is also included in the QML plugin for the composer
and/or computer performer to parse, extract and send specific data to other



Daria: A New Framework for Mixed Media Music 3

listening VSTs. In our particular scenario the QML plugin was programmed to
transmit two additional arrays, both of which were constructed from information
contained inside the musical score. While the first array was sent to the Random
Electronic Sounds (RES) VST, the second one was directed towards the Looper
VST.

As can be seen in Figure 1, we decided to include this data inside two distinct
Musescore instruments. By following this approach we were able to represent the
start and end time, as well as a few other parameters required by the Csound
instruments, simply by using traditional music notation.

2.2 The Conductor VST

The Conductor is a VST audio effect plugin exported from Cabbage. It allows
the electronic performer (or the acoustic instrument player in case of practice
sessions and rehearsals) to rewind, stop, start, pause and advance the playback
cursor; modify and visually keep track of a countdown timeline; be aware of the
transport position of JACK in relation to the measures and beats contained in
the musical score; and check the total duration of the piece as well as the time
of the current playback position.

Fig. 2. The Conductor VST.

The construction of this VST demanded the development of two new Csound
opcodes: jackquery, for controlling the JACK transport; and floorarray, for
conducting a binary search among the array containing the time cues. The Cab-
bage source code also had to be modified in order to dynamically display bar
lines and numbers inside its image widget [8].



4 Guillermo Senna and Juan Nava Aroza

2.3 The Random Electronic Sounds (RES) VST

The RES is a VST audio effect plugin that plays back randomly selected audio
files while keeping them in sync with the shared clock provided by JACK. After
receiving an array of numeric values from the Musescore plugin, the aforemen-
tioned files are laid out on a virtual timeline that corresponds to the rhythmic
figures written on the musical score. Moreover, when the user repositions the
transport through the Conductor (or by means of an external application) the
RES updates its internal state to reflect the newly assumed position.

We believe the programming pattern used for achieving this kind of function-
ality to be relevant to composers and/or computer performers while they try to
design new VSTs that are meant to be used with this framework. In consequence,
we will further explain this technique in 2.4.

The Graphical User Interface (GUI) of this plugin is composed of a button
to scan (or later, rescan) the folder containing the audio files; a virtual LED for
indicating the status of the plugin; a bypass button for disabling the effect; a
rotary knob for adjusting the pan position; a vertical slider for controlling the
output level; and a virtual VU Meter to check the levels present at the output.

Fig. 3. The Random Electronic Sounds (RES) VST.

The RES VST required the development of three new Csound opcodes:
filewalker, a recursive file iterator; flnarray, for querying the lengths of a
collection of audio files; and erandom, for randomly choosing files depending on
a list of parameters received by the plugin.



Daria: A New Framework for Mixed Media Music 5

2.4 The Looper VST

The Looper is conceptually the simplest of the VSTs presented in this paper.
After initialization, it expects to receive an array of time cues through an UDP
port. The first pair of values triggers a recording instrument, while the remaining
subsets of the array activate different instances of a same instrument that plays
back what has been previously recorded.

Its GUI consists of two vertical sliders for controlling the gain of the input
present at channel 1 and channel 2; a mono VU Meter for each input; two rotary
sliders for modifying the pan position of each channel; a color-coded LED for
checking the status of the plugin; a bypass button; a vertical slider for adjusting
the level of the output; and a stereo VU Meter for controlling the levels present
at the output.

Fig. 4. The Looper VST.

As previously stated, a particular programming pattern was used in the
Looper -as well as it was in the RES - that can be further utilized while develop-
ing new plugins. By using this technique we can control the triggering process
of any Csound instrument that is thought to be kept in sync with the transport.

Conceptually, the design pattern can be explained in terms of a chain of
instruments that are sequentially called upon. In this chain, the first instrument
-from here on the listener - is prepared to receive an array of values through
the OSC protocol. Upon success, the listener calls a new instance of another
instrument (the watchdog) for every note written on the relevant instrumental
part of the musical score.

Each watchdog will be in charge of keeping track of the external time in
terms of samples and seconds, updating the corresponding Csound control vari-



6 Guillermo Senna and Juan Nava Aroza

ables and channels throughout the performance. Later, whenever the instanta-
neous time position of the transport falls in between the correct time interval,
a performer instrument will be triggered. It is important to note that an auto-
matically re-triggering process will also occur whenever a repositioning of the
transport has taken place.

The performer is the last component of our chain and also the Csound instru-
ment in charge of handling the audio processing task we are ultimately trying
to accomplish. This means that the sole purpose of the other two instruments is
to relay the information coming from the notation editor and also to enforce a
synchronism between the performer and the external transport, but by encap-
sulating each task in a different Csound instrument we ensure a design pattern
that can be generically applied to any new VST effect.

3 Conclusions

The framework presented in this paper provides a novel alternative for producing
mixed media music. Being modular by nature, all Cabbage effects and instru-
ments already created by the community can be (asynchronously) used and new
ones could also be developed to perform in sync with the musical score.

By using MIDI and/or audio automation tracks -both functions provided
natively by Carla- the acoustic instrument player and/or the electronic performer
can both individually study the musical piece, transforming a practice session at
home into a full rehearsal. Moreover, software like Xjadeo [9] could be used to
perform live mixed media music perfectly in sync with the playback of a video.

In the near future we expect to test this new framework in an educational
environment. We hope that this kind of live experience will enable us to gather
feedback and this, in turn, will subsequently help us improve the system to meet
the demands of future mixed media music composers.

References

1. Lluán, C. et al.: A theoretical and aesthetics approach to the study and practice
of mixed Electroacoustic Music: a pedagogical proposal. In: Electroacoustic Music
Studies Network EMS 09: Heritage and Future. Buenos Aires (2009)

2. Musescore website, https://musescore.org
3. Walsh, R.: Developing Csound Plugins with Cabbage. In: Ways Ahead: Proceedings

of the First International Csound Conference, pp. 64–82. Cambridge (2013)
4. Cabbage website, http://cabbageaudio.com
5. JACK Audio Connection Kit website, http://jackaudio.org
6. Carla Github repository, https://github.com/falkTX/Carla
7. Daria Github repository, https://github.com/gsenna/Daria
8. Cabbage Docs: the image widget, http://cabbageaudio.com/docs/image
9. Xjadeo website, http://xjadeo.sourceforge.net

https://musescore.org
http://cabbageaudio.com
http://jackaudio.org
https://github.com/falkTX/Carla
https://github.com/gsenna/Daria
http://cabbageaudio.com/docs/image
http://xjadeo.sourceforge.net

	Daria: A New Framework for Composing, Rehearsing and Performing Mixed Media Music
	Introduction
	A Brief Overview of the Plugins
	The Musescore Plugin
	The Conductor VST
	The Random Electronic Sounds (RES) VST
	The Looper VST

	Conclusions


