

Proceedings of the Fourth International Csound Conference

Edited by:

Luis Jure
lj@eum.edu.uy

Published by:

Escuela Universitaria de Música, Universidad de la República
Av. 18 de Julio 1772, CP 11200
Montevideo, Uruguay

ISSN 2393-7580

© 2017 International Csound Conference

Conference Chairs
Luis Jure (Chair)

Martín Rocamora (Co-Chair)

Organization Team
Jimena Arruti

Pablo Cancela

Guillermo Carter

Guzmán Calzada

Ignacio Irigaray

Lucía Chamorro

Felipe Lamolle

Juan Martín López

Gustavo Sansone

Sofía Scheps

Sessions Chairs
Pablo Cancela

Pablo Di Liscia

Michael Gogins

Joachim Heintz

Luis Jure

Iain McCurdy

Martín Rocamora

Steven Yi

Music Curator
Luis Jure

Paper Review Committee
Øyvind Brandtsegg

Pablo Di Liscia

John ftch

Michael Gogins

Joachim Heintz

Alex Hofmann

Tarmo Johannes

Victor Lazzarini

Iain McCurdy

Rory Walsh

Music Review Committee
Pablo Cetta

Joel Chadabe

Ricardo Dal Farra

Pablo Di Liscia

Folkmar Hein

Joachim Heintz

Clara Maïda

Iain McCurdy

Flo Menezes

Daniel Oppenheim

Juan Pampin

Carmelo Saitta

Rodrigo Sigal

Clemens von Reusner

Index

Preface

Keynote talks

The 60 years leading to Csound 6.09
Victor Lazzarini

Don Quijote, the Island and the Golden Age
Joachim Heintz

The ATS technique in Csound: theoretical background, present state and prospective
Oscar Pablo Di Liscia

Csound – The Swiss Army Synthesiser
Iain McCurdy

How and Why I Use Csound Today
Steven Yi

Conference papers

Working with pch2csd – Clavia NM G2 to Csound Converter
Gleb Rogozinsky, Eugene Cherny and Michael Chesnokov

Daria: A New Framework for Composing, Rehearsing and Performing Mixed Media Music
Guillermo Senna and Juan Nava Aroza

Interactive Csound Coding with Emacs
Hlöðver Sigurðsson

Chunking: A new Approach to Algorithmic Composition of Rhythm and Metre for Csound
Georg Boenn

Interactive Visual Music with Csound and HTML5
Michael Gogins

Spectral and 3D spatial granular synthesis in Csound
Oscar Pablo Di Liscia

Preface

The International Csound Conference (ICSC) is the principal biennial meeting for
members of the Csound community and typically attracts worldwide attendance.
After previous successful conferences in Hanover, Germany (2011), Boston, USA
(2013), and Saint Petersburg, Russia (2015), in 2017 we had the great honour and
huge responsibility of hosting the first ICSC to take place in the Southern Hemi-
sphere. From September 29th to October 1st, Csound users and developers from
around the world met in Montevideo for a series of activities that included con-
certs, paper sessions, keynote talks, and round tables.

The ICSC2017 was possible thanks to the financial and institutional support of
the university in Uruguay, Universidad de la República, mainly through its agen-
cies Espacio Interdisciplinario and Comisión Sectorial de Investigación Científica
as well as through the School of Music and Faculty of Engineering. We also have
to thank Teatro Solís and Presidencia de la República for kindly providing venues
for several of our activities. Last but not least, I must express my deep gratitude
to the whole team of the Estudio de Música Electroacústica–eMe and the GPA–
Audio Processing Group, without whose constant support, hard work, and dedic-
ation, the Csound conference in Montevideo would not have been possible.

This document presents all of the papers that were selected for the conference by
a committee of prestigious reviewers through a double–blind procedure. The pro-
gram also featured five distinguished keynote speakers who were especially invited
for the conference; the abstracts of their talks are also included in these proceed-
ings. We hope that this volume will contribute to the ever–growing esteemed
body of Csound literature.

Luis Jure
ICSC2017 Conference Chair

Keynote talks

Keynote Talk 1

The 60 years leading to Csound 6.09

Victor Lazzarini
Maynooth University, Ireland

Abstract
Today’s Csound is but the latest link in an uninterrupted chain of development that
stretches back 60 years to 1957, when Max Mathews wrote the first digital synthesis
program, MUSIC I. The seeds for what we have today were sown in the early sixties
with MUSIC III and IV. The basic shape for Csound was put in place later in the
decade with MUSIC 360, followed by MUSIC 11 in the seventies. This talk explores the
history of this software, with a close look at the main developments leading to the
latest version of Csound.

Biography
Prof. Lazzarini is a graduate of the Universidade Estadual de Campinas (UNICAMP)
in Brazil, where he was awarded a BMus in Composition. He completed his doctorate
at the University of Nottingham, UK, where he was received the Heyman scholarship
for research progress and the Hallward composition prize for one of his works,
Magnificat. His interests include musical signal processing and sound synthesis;
computer music languages; electroacoustic and instrumental composition.
Dr Lazzarini received the NUI New Researcher Award in 2002 and the Ireland Canada
University Foundation scholarship in 2006. He currently leads the Sound and Digital
Music Research Group at the NUIM and has authored over one hundred articles in
peer-reviewed publications in his various specialist research areas. He is the author of
Aulib, an object-oriented library for audio signal processing, and is one of the project
leaders for Csound. Prof. Lazzarini has also forged links with Industry, providing
consultancy and research support to Irish companies in the area of computer music.
In addition to these activities, he is active as a composer of computer and instrumental
music, having won the AIC/IMRO International Composition prize in 2006. His music
is regularly performed in Ireland and abroad, and has been released on CD by FarPoint
Recordings.
Recent publications include “Ecologically Grounded Creative Practices in Ubiquitous
Music” (Organised Sound, 22, 2017, with D. Keller), Csound: A Sound and Music
Computing System (Springer, 2016, with J. ffitch, S. Yi, J. Heintz, O. Brandtsegg, and
I. McCurdy), and the forthcoming Computer Music Instruments: Foundations, Design
and Applications (Springer, 2017).

https://aulib.github.io/
http://csound.github.io/

Keynote Talk 2

Don Quijote, the Island and the Golden Age
Some Experiences and Dimensions of Working “Open Source” and “Free”

Joachim Heintz
Hochschule für Musik, Theater und Medien Hannover, Germany

Abstract
I am using Csound since twenty years, being more active in its community since more
than ten years. I will talk about different experiences with this collaborative work in
this time, and I will try to reflect some of these aspects in a more general context:
What is the situation in which we develop a software like Csound? Why do we do it?
What are restrictions, where is our freedom?

Biography
Joachim Heintz studied first literature, than composition with korean composer
Younghi Pagh-Paan in Bremen, Germany. Since 2004 he is head of the Electronic
Studio FMSBW in the Institute for New Music Incontri at Hanover University for
Music Drama and Media, responsible for teaching electronic composition. In 2016/17 he
was also invited as guest professor to ICEM at Folkwang University of the Arts in
Essen. Although in a way specialized in working with electronic media, his compositions
are not purely electroacoustic works. He also works for instruments alone, and in
particular for instruments with live electronics (e.g. "S‘io non miro non moro" for
soprano and electronics 2013, or “Wege” for string quartet and electronics 2017). Except
for concerts, he also works for installations and performances (theatre and readings).
Since 2005 he is part of the Open Source Software movement, in particular the well-
known audio programming language Csound. He hosted the first International Csound
Conference 2011 in Hanover and founded the Csound FLOSS Manual which is now the
standard textbook to learn Csound. He is one of the authors of the new Csound Book
in Springer Publishing.
He held classes in many countries, recently in Tehran (Iran), Montevideo (Uruguay),
Buenos Aires (Argentina) and Seoul (Korea). He tries to teach not only programming
but to discuss questions of composition and art in general and in the field of electronic
music in particular.
A list of his compositions and texts can be found at www.joachimheintz.de.

http://joachimheintz.de/

Keynote Talk 3

The ATS technique in Csound: theoretical background, present
state and prospective

Oscar Pablo Di Liscia
Universidad Nacional de Quilmes, Argentina

Abstract
The ATS technique (Analysis-Transformation-Synthesis) was developed by the
composer and researcher Juan Pampin (DXARTS, UW, USA). Essentially, it represents
two aspects of the analyzed signal: the deterministic part and the stochastic part. This
model was initially conceived by Julius Orion Smith and Xavier Serra, but ATS refines
certain aspects of it, such as the inclusion of psycho-acoustic data. The deterministic
part consists of sinusoidal trajectories with varying amplitude, frequency and phase. It
is obtained performing high-level analysis on the spectral data obtained using Short-
Time Fourier Transform analysis. The stochastic part is also termed residual, because it
is achieved by subtracting the deterministic signal from the original signal. Since
approximately 2001, several applications were developed by a team of academics from
UNQ (Argentina) and UW Seattle (USA). These applications included stand alone
programs as well as unit generators for environments like Pure Data, SuperCollider and
Csound. The talk will address the theoretical background of the ATS technique, the
present state of the opcodes and analysis units developed in Csound, and their future
improvements.

Biography
Oscar Pablo Di Liscia is a composer and academic born in Santa Rosa (La Pampa,
Argentina). Doctor in Humanities and Arts at Universidad Nacional de Rosario. Was
Director of the Program in Electronic Composition of Universidad Nacional de Quilmes
(UNQ, Argentina) and Research Secretary at Universidad Nacional de las Artes (UNA,
Argentina). Presently, he is Professor of Computer Music and Composition in the
School of Arts (EUdA) at UNQ and in the Multimedia Arts Department at UNA. He
also is Director of the Research Program “Temporal Systems and Spatial Synthesis in
Sonic Art” and of the Editorial collection “Music and Science” at UNQ.
He has published papers and books on aesthetics and techniques of new music and
technologies, as well as developed software for Digital Signal Processing, Musical
Analysis and Composition. His main areas of research are: Digital Signal Processing
(specially Sound Spatialisation and Spectral Analysis of Digital Sound), Electronic
Composition and Computer Music. His compositions, both electronic and instrumental
were awarded by national and international societies, recorded and edited, and
performed in several countries (Argentina, Chile, Uruguay, Cuba, USA, France, Spain,
Chile, and Holland).

Keynote Talk 4

Csound – the Swiss Army Synthesiser

Iain McCurdy
Maynooth University, Ireland

Abstract
In the 1980s and 90s, Csound cut a pioneering path, enabling a wider range of
composers and researchers to access the explore computer music techniques established
by the Music N family of programs. During these early stages of its existence, Csound
sat relatively unchallenged as the serious tool for computer-based sound synthesis. This
talk will explore how, within out current burgeoning toolbox of computer music
options, Csound has continued to redefine itself, integrate and innovate. The speaker
will also describe his own journey with Csound from the late 1990s and his ongoing
pursuit to exhaust its possibilities.

Biography
Iain McCurdy is a composer and lecturer originally from Belfast and currently based at
Maynooth University Ireland. He has been working with, and contributing to, the
Csound project since 1999. His contributions to Csound have included working on the
FLOSS manual project, writing parts of the new Springer Csound Book. He has also
written a catalogue of over 600 interactive examples for Csound covering many of its
capabilities. This resource has proved valuable for many learning the program. Since
2015 Iain has also taken on the role of co–editor of the Csound Journal with Jim
Hearon. More recent work has focussed on the popular Csound front–end, Cabbage.
Since January 2016 Iain has held the position of Lecturer in Music at the University of
Maynooth (National University of Ireland) where his teaching duties cover composition,
electronic music, programming and research supervision.
As a composer his work has covered the areas of acousmatic, electroacoustic,
instrumental, sound installation and cross–disciplinary works involving all four. His
work with sound installations and alternative controller design has drawn in exploration
of electronics, sensors and instrument building.
More information about Iain is available at his website: www.iainmccurdy.org.

http://www.iainmccurdy.org/

Keynote Talk 5

How and Why I Use Csound Today

Steven Yi

Abstract
The technology of computers and computer music has changed greatly since I first
encountered Csound in 1999. Now, in 2017, 31 years after Csound was first released, I
find I enjoy using Csound more than ever. In this talk, I will discuss how and why I use
Csound today. I will demonstrate and share ways in which my own personal practice
and approach to using Csound has evolved over time. I will then look at ways Csound
could evolve and consider how those changes may impact how we see and use Csound
in the future.

Biography
Steven Yi is a composer and programer. He is the author of the Blue music composition
environment, author of the Pink and Score music libraries, and core developer of
Csound. He has contributed work on Csound’s parser and compiler, helped to develop
Csound’s language design, developed opcodes for Csound, and worked on moving
Csound to mobile platforms (Android, iOS) and the web. He also served as the co-
editor of the Csound Journal from 2005–2015, and is co-author of the book Csound. A
Sound and Music Computing System, published by Springer International.
Steven is a long-time supporter of free and open source software for music. He has
presented at the International Computer Music Conference, Linux Audio Conference,
and Csound Conferences. In 2016, Steven received his PhD from Maynooth University
for his thesis work on “Extensible Computer Music Systems.”
More information about Steven is available at his website: www.kunstmusik.com.

http://www.kunstmusik.com/

Conference papers

Working with pch2csd 1

Working with pch2csd – Clavia NM G2 to
Csound Converter

Gleb Rogozinsky1, Eugeny Cherny2 and Michael Chesnokov3,
1 The Bonch-Bruevich St.Petersburg University of Telecommunications, Russia

2 Åbo Akademi University, Finland
3 JSC SEC „Nuclear Physics Research“, Russia

gleb.rogozinsky@gmail.com

Abstract. The paper presents a detailed review on the pch2csd applica-
tion, developed for conversion of popular Clavia Nord Modular G2 syn-
thesizer patch format pch2 into a Csound-based metalanguage. The
Nord Modular G2 was one of the most remarkable synthesizers of late
90s. A considerable number of different patches makes Nord Modular
G2 to be a desirable target for software emulation. In this paper we de-
scribe the pch2csd work flow, including modeling approach, so the de-
veloper may use the paper as a starting point for further experiments.
Each model of Nord Modular's unit is implemented as an User-defined
Opcode. The paper gives an approach for modeling, including descrip-
tion of ancillary files needed for the correct work. First presented at the
International Csound Conference 2015 in St. Petersburg, the pch2csd
project continues to develop. Some directions for future developments
and strategic plans are suggested. The example of transformation of
Nord Modular G2 patch into the Csound code concludes the paper.

Keywords: Nord Modular G2, converter, metalanguage

1 Introduction

In this paper we give the report on the current state of the pch2csd project and
also describe the aspects of using our application. The pch2csd was first intro-
duced to the Csound community at the International Csound Conference 2015,
St. Petersburg Russia. At that time, the authors presented the results of their
first experiments on converting Clavia Nord Modular G2 (NM2) patches into
Csound code and demonstrated simple Csound code, automatically created as
an output of the converter [1].

The NM2 was a quite remarkable software-hardware modular synthesizer
from the late 90s. Its core is built on 4 DSPs and it is programmed via GUI
while being connected to the computer. Then programmed, it can run stand-
alone [2].

The NM2 patch consists of two main parts called voice part (VA) and global
effects (FX). The VA is a subject of polyphony, comparing to FX part. The

2 Gleb Rogozinsky et al.

greater the number of voices played simultaneously, the lesser number of mod-
ules can be used before overrun. NM2 uses fixed sampling rate of 96 kHz for au-
dio signals and 24 kHz for control rate signals. The overall number of modules is
around 200, including numerous generators, filters, mixers, switches, MIDI
units, logics, sequencers and some effects.

From the beginning the pch2csd code was written in C. At the present time
we are working at translating it to Python. Rewriting the converter in Python
made the code much simpler and easier to maintain, improved cross-platform
support, as well as provided better distribution through PIP. Prior to our work,
the NM2 patch format (pch2) had been already described by [3]. There were
also several projects related to alternative graphical interfaces for NM2 [4], [5].
Their repositories also include some useful data.

2 The pch2csd Work Flow

After the program starts the user is prompted to enter the valid path to pch2
file. The program checks the consistency of the following components: Csound
opcodes, mapping tables, and input-output tables. The program outputs check
results as a table to the terminal window. The output csd file is then created in
the program's working directory.

2.1 Modeling Approach

Each NM2 unit should have a corresponding Csound model, placed in the
/pch2csd/resources/templates/modules as a txt file with the module ID, i.e.
12.txt. The list of module IDs can be found in mod_type_name.json file. The
NM2 units are modeled as Csound UDOs. Csound compiler reads the code lines
from top to the bottom, which is completely different approach to graphical sys-
tem of patching. Fortunately, Csound has a zak-patching system. It provides a
given number of a-rate and k-rate buses to intercommunicate between different
instruments. Those two spaces are independent from each other, comparing to
NM2 patching system, where all cables are sequentially numbered. Comparing
to typical behavior of Csound opcodes, where each opcode typically accepts
some input data as some parameters and outputs the result(s), our zak-based
UDOs do not have any outputs. After parameter fields our UDOs have an IO
field, in which the numbers of buses in zak-space are listed.

Thus in our system we typically have

SomeOpcode aP1, kP2 [, ...], kIn1 [, ...], kOut1[, ...]

where aP1 and kP2 are some module parameters, kIn1 is a number of k- or a-
rate bus to read an input data from, and kOut1 is a number of some k- or a-rate
bus to send data to. Using described approach we are able to place the opcodes
in csd file in arbitrary order, just like NM2 user can.

Working with pch2csd 3

2.2 Values Mapping

Another important aspect is the values mapping. The NM2 modules have sever-
al different controller types of a number of ranges, i.e. audio frequency range,
amplitude range, normalized values in the range from 0 to 1, delay time ranges,
envelope stage durations, etc. The actual values of the controllers can be seen
only when using the software editor. The NM2 patch file stores 7-bit MIDI CC
values without any reference to the appropriate range. Thus we had to manually
copy all data types, ranges and values. The actual values can be found in
value_maps.json file. We use specially commented mapping lines, which start
with an @ symbol and list the tables to be used for each parameter of the mod-
ule. I.e 112.txt (LevAdd module) contains following lines:

;@ map s 2 LVLpos LVLlev
;@ map d BUT002

This means that the mapping table for the first parameter of LevAdd (the
constant value to add to the input signal) is dependent on a second (s 2) pa-
rameter, which is the two-state button (table BUT002). The button switches
LevAdd from unipolar to bipolar range of values. According to the choice, one of
two possible mapping tables is selected (LVLpos or LVLlev). The order of NM2
parameters are fixed. Each line of a mapping file relates to the corresponding
parameter of NM2 unit. The first symbol after keyword map marks whether the
parameter needs direct (d) mapping, i.e. its 7-bit MIDI CC value points to the
actual value in given table (i.e. BUT002 table), or the actual parameter value
depends on some selection (s). For the last option, there should be several possi-
ble mapping tables listed (LVLpos LVLlev) after the pointer to selector (2).
Typically each module starts from one or several mapping lines. The mapping
tables are stored in /pch2csd/resources/value_maps.json.

2.3 Polymorphism Issue

It should also be noted that several NM2 modules are polymorphous, i.e. k-rate
filter can turn into a-rate filter depending on a type of an input signal. Unfortu-
nately there is no direct indication of current module type in a pch2 file, so the
actual module type can be found only through analyzing of incoming cable con-
nections. Our algorithm checks the module type, and its input connections. In
case of non-default type of the input, the corresponding module twin is used in-
stead of the default one. As it mention above, the default module UDOs are
placed in Modules directory. The twins are placed in seludoM1 directory under
the same name.

1 Reverse of the word 'Modules'

4 Gleb Rogozinsky et al.

3 The Current State

We currently have 1002 of 182 modules implemented as Csound user-defined op-
codes and 36 mapping tables to map the values from the 7-bit ints to non-linear
parameter range. Storing the data as the text allows anyone to change the be-
havior of the modules without touching the code.

Most of implemented modules still need careful checking and improvements.
From the NM2 simulation side, most attention should be paid to generators. Al-
most every sound begins with the oscillator section, and the corresponding units
should be modeled first. The NM2 oscillators produce aliased waveforms at 96
kHz. The Figure 1 shows the amplitude spectra of Clavia’s sawtooth. We can
clearly see the aliasing part of the spectra, mirrored from the Nyquist frequency
(red line, 48 kHz). This feature of NM2 distinguishes it from the popular family
of analog-modeling synthesizers, which typically produce alias-free waveforms,
and makes it possible to simulate the corresponding waves by simple generation
of ideal piece-wise functions using GEN7. The authors have already implement-
ed most of the straight-forward modules, i.e. mixing operations, level, delay,
logics and switching. Though some of them still need some careful approach for
being as close as possible to their NM2 copies, i.e. NoiseGate and EnvFollower.

Fig. 1. Spectra of NM2 sawtooth wave.

 The main problem regarding envelopes is the NM2's ability to change the
envelope parameters during the run. This makes no use of Csound's typical so-
lutions based on linseg, expseg or transeg units. Filters are rather the question of
time, since their behavior should be carefully copied, i.e. through analysis of
white noise filtering.

2 Of which up to 20 modules so far have almost exact behavior as original NM2

Working with pch2csd 5

Another important goal we started working on recently is to make the project
hackable, so users would be able to easily modify module implementations to
contribute to the project or to modify sound for their own tastes. Our next pos-
sible to-do after providing a completely working solution is an integration with
some existing Clavia patch editor. It would actually establish the new Clavi-
a-based software modular system running on a Csound core. Also, the native
Csound developments, i.e. Cabbage Studio, seem very promising in the context
of further integration. Current pch2csd sources can be found on the GitHub [6].

Below we give an example of code for the NM2 patch on Fig.2. The patch
consists of three slightly detuned sawtooth oscillators, mixer, envelope unit, LP
filter and a simple delay in FX section.

Fig. 2. NM2 patch used for testing.

Orchestra Example3:
sr = 96000
kr = 24000
nchnls = 2
0dbfs = 1

zakinit 12, 4 ; establish z-space of 12 a- and 4 k-rate buses

opcode OscD, 0, iKi ; a simplified NM2 oscillator OscD model
iPitch, kFine, iOut xin
kfine = cent(kFine)
icps = cpsmidinn(iPitch)
aout oscili 1, icps*kfine, 1
zaw aout, iOut

endop

opcode Mix41B, 0, kkkkiiiii ; a NM2 4-1 mixer model
kLev1, kLev2, kLev3, kLev4, in1, in2, in3, in4, iout xin

a1 zar in1
a2 zar in2
a3 zar in3
a4 zar in4
aout = a1*kLev1 + a2*kLev2 + a3*kLev3 + a4*kLev4
zaw aout, iout

endop

3 Some ancillary code lines are intentionally omitted for the reasons of size

6 Gleb Rogozinsky et al.

opcode EnvDSimple, 0, kiii ; a simplified NM2 envelope generator
kH, iIn,iEnv,iOut xin
aIn zar iIn
kEnv expseg .00001,.001,1,i(kH),.00001
zkw kEnv, iEnv
zaw aIn*kEnv, iOut

endop

opcode FltLP, 0, ikkiii ; a simplified NM2 LP filter model
iOrder, kMod, kCF, in1, imod, iout xin
ain zar in1
kmod zkr imod
aout tonex ain, kCF+kmod*kMod, iOrder
zaw aout, iout

endop

opcode Out2, 0, ii ; a simplified NM2 Out2 model
iL, iR xin
aL zar iL
aR zar iR
outs aL, aR

endop

opcode DlySingleA, 0, kii ; a NM2 delay unit model
kTime, iIn, iOut xin
ain zar iIn
abuf delayr 1
aout deltap kTime
delayw ain
zaw aout, iOut

endop

instr 1 ; this is a VA part of NM2 patch
OscD 64, 24, 2
OscD 64, 0, 3
OscD 64, -27, 4
Mix41B 0.336, 0.781, 0.430, 0.781, 2, 3, 4, 0, 5
EnvDSimple 0.456, 5, 3, 6
FltLP 4, 2050,2090,6,3,9

endin
instr 2 ; this is a FX part of NM2 patch

DlySingleA 0.362, 9, 10
Out2 9,10

endin

Score Example:
f1 0 16384 7 0 8192 1 0 -1 8192 0
f2 0 16384 10 1
i1 0 [60*60*24*7]
i2 0 [60*60*24*7]

Working with pch2csd 7

References

1. Rogozinsky G., Cherny E., and Osipenko I.: Making mainstream synthesizers with
csound. In: Proceedings of the 3rd International Csound Conference, pp. 132–140. St.Pe-
tersburg (2016)
2. Sound On Sound article on Clavia Nord Modular G2, http://soundonsound.com/re-
views/clavia-nord-modular-g2
3. Michael Dewberry Home Page, http://www.dewb.org/g2/pch2format.html
4. NMG2 Open source editor, https://sourceforge.net/projects/nmg2editor/
5. G2Dev page, http://bverhue.nl/g2dev/?page_id=17
6. pch2csd GitHub page, https://github.com/gleb812/pch2csd

Daria: A New Framework for Composing,
Rehearsing and Performing Mixed Media Music

Guillermo Senna1 and Juan Nava Aroza2 ?

1 Universidad Nacional de Rosario
2 Universidad Nacional de Rosario

Abstract. In this paper we present a new modular software framework
for composing, rehearsing and performing mixed media music. By com-
bining and extending existing open-source software we were able to syn-
chronize the playback of the free Musescore music notation editor with
three VST audio effects exported using the Csound frontend Cabbage.
The JACK Audio Connection Kit sound server was used to provide a
common clock and a shared virtual timeline to which each component
could adhere to and follow. Moreover, data contained on the musical score
was used to control the relative position of specific Csound events within
the aforementioned timeline. We will explain the nature of the plugins
that were built and briefly identify the five new Csound opcodes that
the development process required. We will also comment on a generic
programming pattern that could be used to create new compatible VST
audio effects and instruments. Finally, we will conclude by mentioning
what other related software exists that can interact out-of-the-box with
our framework, how instrument players and computer performers can
simulate the performance experience while practicing their correspond-
ing parts at home and what our future plans for this software ecosystem
are.

Keywords: Mixed media music, Musescore, Csound, Cabbage, JACK.

1 Introduction

The aim of this paper is to present a new modular framework for composing, re-
hearsing and performing mixed media music. The pedagogical method presented
by Lluán et al. [1] inspired us to build a new open-source alternative to their
proposed system. By modifying and extending the free Musescore music nota-
tion editor [2], as well as by designing a series of VST effects with the Csound
frontend Cabbage [3,4], we were able to build a more open and flexible substi-
tute. The JACK Audio Connection Kit sound server [5] was used for providing
a common clock and a shared virtual timeline and the software Carla [6] was
chosen as our preferred VST host. As a result every component of this project
is not only open-source, but also multiplatform.

? We would like to gratefully thank Professor Claudio Lluán for his continued support
and guidance.

2 Guillermo Senna and Juan Nava Aroza

A short musical fragment and three new VST audio effects were created for
demonstrating the capabilities of our system. Although not yet available for its
first stable release, all the code that pertains to this project, including forked
and modified third-party repositories, is now publicly available [7].

The synchronization between the music notation editor and Csound was
achieved by developing a new Musescore plugin and a single VST (the Con-
ductor) for controlling the transport part of the audio server. The two other
VST audio effects mentioned earlier will serve us to showcase a common pro-
gramming pattern for triggering Csound events that are required to be kept in
sync with the shared timeline.

2 A Brief Overview of the Plugins

2.1 The Musescore Plugin

A new Musescore plugin was developed using the QML markup language. When
called, this plugin first inspects the musical score and stores the time cues where
each new measure starts. The resulting collection of values is sent to the Con-
ductor using the OSC protocol.

For testing purposes, we used the musical score represented in Figure 1. The
synchronization between the music notation editor and the Conductor plugin is
considered essential for this system to work. Consequently, this communication
should not be omitted while working on new musical pieces.

Fig. 1. A short musical fragment used to test our system.

A Javascript function is also included in the QML plugin for the composer
and/or computer performer to parse, extract and send specific data to other

Daria: A New Framework for Mixed Media Music 3

listening VSTs. In our particular scenario the QML plugin was programmed to
transmit two additional arrays, both of which were constructed from information
contained inside the musical score. While the first array was sent to the Random
Electronic Sounds (RES) VST, the second one was directed towards the Looper
VST.

As can be seen in Figure 1, we decided to include this data inside two distinct
Musescore instruments. By following this approach we were able to represent the
start and end time, as well as a few other parameters required by the Csound
instruments, simply by using traditional music notation.

2.2 The Conductor VST

The Conductor is a VST audio effect plugin exported from Cabbage. It allows
the electronic performer (or the acoustic instrument player in case of practice
sessions and rehearsals) to rewind, stop, start, pause and advance the playback
cursor; modify and visually keep track of a countdown timeline; be aware of the
transport position of JACK in relation to the measures and beats contained in
the musical score; and check the total duration of the piece as well as the time
of the current playback position.

Fig. 2. The Conductor VST.

The construction of this VST demanded the development of two new Csound
opcodes: jackquery, for controlling the JACK transport; and floorarray, for
conducting a binary search among the array containing the time cues. The Cab-
bage source code also had to be modified in order to dynamically display bar
lines and numbers inside its image widget [8].

4 Guillermo Senna and Juan Nava Aroza

2.3 The Random Electronic Sounds (RES) VST

The RES is a VST audio effect plugin that plays back randomly selected audio
files while keeping them in sync with the shared clock provided by JACK. After
receiving an array of numeric values from the Musescore plugin, the aforemen-
tioned files are laid out on a virtual timeline that corresponds to the rhythmic
figures written on the musical score. Moreover, when the user repositions the
transport through the Conductor (or by means of an external application) the
RES updates its internal state to reflect the newly assumed position.

We believe the programming pattern used for achieving this kind of function-
ality to be relevant to composers and/or computer performers while they try to
design new VSTs that are meant to be used with this framework. In consequence,
we will further explain this technique in 2.4.

The Graphical User Interface (GUI) of this plugin is composed of a button
to scan (or later, rescan) the folder containing the audio files; a virtual LED for
indicating the status of the plugin; a bypass button for disabling the effect; a
rotary knob for adjusting the pan position; a vertical slider for controlling the
output level; and a virtual VU Meter to check the levels present at the output.

Fig. 3. The Random Electronic Sounds (RES) VST.

The RES VST required the development of three new Csound opcodes:
filewalker, a recursive file iterator; flnarray, for querying the lengths of a
collection of audio files; and erandom, for randomly choosing files depending on
a list of parameters received by the plugin.

Daria: A New Framework for Mixed Media Music 5

2.4 The Looper VST

The Looper is conceptually the simplest of the VSTs presented in this paper.
After initialization, it expects to receive an array of time cues through an UDP
port. The first pair of values triggers a recording instrument, while the remaining
subsets of the array activate different instances of a same instrument that plays
back what has been previously recorded.

Its GUI consists of two vertical sliders for controlling the gain of the input
present at channel 1 and channel 2; a mono VU Meter for each input; two rotary
sliders for modifying the pan position of each channel; a color-coded LED for
checking the status of the plugin; a bypass button; a vertical slider for adjusting
the level of the output; and a stereo VU Meter for controlling the levels present
at the output.

Fig. 4. The Looper VST.

As previously stated, a particular programming pattern was used in the
Looper -as well as it was in the RES - that can be further utilized while develop-
ing new plugins. By using this technique we can control the triggering process
of any Csound instrument that is thought to be kept in sync with the transport.

Conceptually, the design pattern can be explained in terms of a chain of
instruments that are sequentially called upon. In this chain, the first instrument
-from here on the listener - is prepared to receive an array of values through
the OSC protocol. Upon success, the listener calls a new instance of another
instrument (the watchdog) for every note written on the relevant instrumental
part of the musical score.

Each watchdog will be in charge of keeping track of the external time in
terms of samples and seconds, updating the corresponding Csound control vari-

6 Guillermo Senna and Juan Nava Aroza

ables and channels throughout the performance. Later, whenever the instanta-
neous time position of the transport falls in between the correct time interval,
a performer instrument will be triggered. It is important to note that an auto-
matically re-triggering process will also occur whenever a repositioning of the
transport has taken place.

The performer is the last component of our chain and also the Csound instru-
ment in charge of handling the audio processing task we are ultimately trying
to accomplish. This means that the sole purpose of the other two instruments is
to relay the information coming from the notation editor and also to enforce a
synchronism between the performer and the external transport, but by encap-
sulating each task in a different Csound instrument we ensure a design pattern
that can be generically applied to any new VST effect.

3 Conclusions

The framework presented in this paper provides a novel alternative for producing
mixed media music. Being modular by nature, all Cabbage effects and instru-
ments already created by the community can be (asynchronously) used and new
ones could also be developed to perform in sync with the musical score.

By using MIDI and/or audio automation tracks -both functions provided
natively by Carla- the acoustic instrument player and/or the electronic performer
can both individually study the musical piece, transforming a practice session at
home into a full rehearsal. Moreover, software like Xjadeo [9] could be used to
perform live mixed media music perfectly in sync with the playback of a video.

In the near future we expect to test this new framework in an educational
environment. We hope that this kind of live experience will enable us to gather
feedback and this, in turn, will subsequently help us improve the system to meet
the demands of future mixed media music composers.

References

1. Lluán, C. et al.: A theoretical and aesthetics approach to the study and practice
of mixed Electroacoustic Music: a pedagogical proposal. In: Electroacoustic Music
Studies Network EMS 09: Heritage and Future. Buenos Aires (2009)

2. Musescore website, https://musescore.org
3. Walsh, R.: Developing Csound Plugins with Cabbage. In: Ways Ahead: Proceedings

of the First International Csound Conference, pp. 64–82. Cambridge (2013)
4. Cabbage website, http://cabbageaudio.com
5. JACK Audio Connection Kit website, http://jackaudio.org
6. Carla Github repository, https://github.com/falkTX/Carla
7. Daria Github repository, https://github.com/gsenna/Daria
8. Cabbage Docs: the image widget, http://cabbageaudio.com/docs/image
9. Xjadeo website, http://xjadeo.sourceforge.net

https://musescore.org
http://cabbageaudio.com
http://jackaudio.org
https://github.com/falkTX/Carla
https://github.com/gsenna/Daria
http://cabbageaudio.com/docs/image
http://xjadeo.sourceforge.net

Interactive Csound coding with Emacs

Hlöðver Sigurðsson

Abstract. This paper will cover the features of the Emacs package
csound-mode, a new major-mode for Csound coding. The package is in
most part a typical emacs major mode where indentation rules, comple-
tions, docstrings and syntax highlighting are provided.
With an extra feature of a REPL1, that is based on running csound
instance through the csound-api. Similar to csound-repl.vim[1] csound-
mode strives to enable the Csound user a faster feedback loop by offering
a REPL instance inside of the text editor. Making the gap between de-
velopment and the final output reachable within a real-time interaction.

1 Introduction

After reading the changelog of Emacs 25.1[2] I discovered a new Emacs feature of
dynamic modules, enabling the possibility of Foreign Function Interface(FFI).
Being insired by Gogins’s recent Common Lisp FFI for the CsoundAPI[3], I
decided to use this new feature and develop an FFI for Csound. I made the
dynamic module which ports the greater part of the C-lang’s csound-api and
wrote some of Steven Yi’s csound-api examples for Elisp, which can be found on
the Gihub page for CsoundAPI-emacsLisp[4].

This sparked my idea of creating a new REPL based Csound major mode for
Emacs. As a composer using Csound, I feel the need to be close to that which
I’m composing at any given moment. From previous Csound front-end tools I’ve
used, the time between writing a Csound statement and hearing its output has
been for me a too long process of mouseclicking and/or changing windows. I
needed something to enhance my Csound composition experience and I decided
to develop a new Csound major mode for Emacs, called simply csound-mode.

Other Emacs packages already exist for Csound, one called csound-x [5] and
an older one from John ffitch[6]. Both of them are based on dual mode between
orchestra and score, csound-x takes the dual mode setup presented in John’s
Emacs packages to a more complete level. That which differentiates csound-
mode from csound-x in terms of user experience is that csound-mode does not
attempt to separate a csound document(csd) in two modes and seeks to keep the
user in one buffer2. csound-x also makes Csound very configurable where paths
and options can be configured separately from global Csound options, csound-
mode tries to keep all Emacs configuration at minimum and respects all system
1 REPL stands for read-eval-print-loop and is a term that is used in many program-

ming languages that offer a language interpreter in a shell, like which can be found
in Python, Node and Clojure.

2 A buffer is an Emacs lingo for a window, as you can have multiple tabs open in many
text editors you can have multiple buffers running inside Emacs.

2 Hlöðver Sigurðsson

paths and global Csound configuration should one exist. Furthermore csound-x
or its dependencies are not compatible as of today with Emacs version 25 or
newer whereas csound-mode is not compatible with Emacs version 24.5 or older.

I hope this tool will be as useful for other composers as it is for me. In the
following sections I will go further into the mechanics of csound-mode.

2 Csound coding style

No official community driven Csound style guide exists, which makes Csound
coding style today rather unstandardized. When deciding on indentation rules
for csound-mode I had to make few opinionated decisions, based on common best
practices. Through informal observation of Csound code from various Csound
users throughout the years, it can be noticed that some coding tendencies are
fading away. For example indented instr statements are very rare in modern
Csound code.

instr 2
a1 oscil p4, p5, 1 ; p4=amp

out a1 ; p5=freq
endin

Fig. 1. Richard Boulanger’s toot2.orc

Rather in most cases, instr and endin statements are set to the beginning
of line with its body indented to right.

instr 1
aenv linseg 1,p3-.05,1,.05,0,.01,0
a1 oscili p4, 333, 1

outs a1*aenv,a1*aenv
endin

Fig. 2. John ffitch’s beast1.orc

What makes these two figures clear and easy to read, is the fact that a
visual distinction is given between the return value, operators/opcodes, input
parameters and optional comments at the end. While this holds true in most
cases, with the introduction of indented boolean blocks, this can quickly get
messy.

Interactive coding with Emacs 3

opcode envelope, a, iiii
iatt, idec, isus, irel xin

xtratim irel
krel release

if (krel == 1) kgoto rel
aenv1 linseg 0, iatt, 1, idec, isus
aenv = aenv1

kgoto done
rel:

aenv2 linseg 1, irel, 0
aenv = aenv1 * aenv2

done:
xout aenv
endop

Fig. 3. Jonathan Murphy’s UDO envelope.udo

Despite its old fashioned indentation in Fig 3, it can be seen that a code
with boolean blocks does not align well with code that is otherwise trying to
form vertical blocks based on outputs and operators. Therefore, as a matter of
opinionated taste, code that forms boolean blocks should be visually aligned to
one another, and for each new depth of nesting, an equal width of indentation
should be added. The following figure displays indentation pattern which follows
the default csound-mode indentation.

opcode gatesig, a, ak
atrig, khold xin
kcount init 0
asig init 0
kndx = 0
kholdsamps = khold * sr
while (kndx < ksmps) do

if(atrig[kndx] == 1) then
kcount = 0

endif
asig[kndx] = (kcount < kholdsamps) ? 1 : 0
kndx += 1
kcount += 1

od
xout asig

endop

Fig. 4. Steven Yi’s UDO gatesig.udo

4 Hlöðver Sigurðsson

In csound-mode the indentation width defaults to 2 spaces, this width is ad-
justable with a customizeable global variable in Emacs under csound-indentation-
spaces. Single line indentation is in Emacs by default bound to the <TAB> key,
like with most in Emacs, this is highly customizeable. csound-mode happens to
work very well with the minor-mode aggressive-indent-mode[7], which automates
indentation based on buffer’s current active major-mode indentation rules and
can in turn saves many keystrokes.

The score section is simpler and more straightforward in terms of inden-
tation as a score statement is separated with newlines. If we look at spread-
sheet applications like Microsoft Excel we see why they are useful for composing
Csound scores. They provide resizable vertical and horizontal blocks, giving a
clear distinction between each parameter field. csound-mode comes with the func-
tion csound-score-align-block that indents sequence of score events, separated by
newline. As will be mentioned later, csound-mode treats series of score events
seperated by newline as a score-block unit. The function csound-score-align-block
is as of current version bound to <C-c C-s>, by applying this function with the
cursor located anywhere within the score-block, all common score parameters
will adjusted to the same width.

i 1 0 100 440 0.000001
i 1 100 100 850 10
i 1 2000 1 60 1|

;; C-c C-s
i 1 0 100 440 0.000001
i 1 100 100 850 10
i 1 2000 1 60 1|

Fig. 5. Score-block transformation in csound-mode where the pipe character represents
cursor location.

By setting the variable csound-indentation-aggressive-score to true, the func-
tion csound-score-align-block will be called on every indentation command. This
function was designed function with aggressive-indentation-mode, but for very
long score blocks it may cost a lot of CPU.

In conclusion, the way which csound-mode indents Csound code is based on
the depth of nesting of boolean statements within the orchestra part or file of
given Csound code. And for the score part or file, no statement will be indented
to right but a possibility of aligning blocks of score statements is available to the
user.

3 Syntax highlighting

csound-mode utilizes the built in font-lock-mode to provide syntax highlighting.
Most colors can be modified via M-x customize-face if wished. For example if

Interactive coding with Emacs 5

the user wishes to change the color of i-rate variables, it would be found under
csound-font-lock-i-rate and global i-rate variables under csound-font-lock-global-
i-rate etc.

By default csound-mode comes with enabled rainbow delimited parameter
fields, meaning each parameter within a score statement will get a unique color,
up to 8 different colors before they repeat. This can potentially give visual aid
to scores statements that have many parameters. If wanted, this feature can be
turned off with the customizeable variable csound-rainbow-score-parameters-p.

4 Completions and documentation

Like most Emacs major-mode packages, csound-mode will also provide eldoc-
mode functionality and autocomplete, where autocomplete can be ac-mode or
the more modern version of it, company-mode. All the data for completions and
eldoc-mode is based on crude xml parsing of the Csound Manual, meaning that
some opcodes and symbols could be missing. The documentation data is stored
in a hash-map and is static, meaning that global symbols from UDOs (user
defined opcodes) evaluated into the Csound instance, do not enjoy the benefits
of font-lock syntax highlighting or company-mode completions.

The echo-buffer is where the docstrings from the autocomplete suggestions
and argument names are printed into. This is where eldoc-mode plays a big role
in csound-mode. While user is typing in values for a given opcode’s parameter,
eldoc will highlight the current argument at the point of the cursor. This works
on multiple lines for opcodes and operators, as well as for nested (functional-
style) opcodes calls, which are given argument values between parenthesis.

5 Csound interaction

Before talking about the Csound REPL, it’s worth mentioning the two "offline"
possibilites, namely the functions csound-play bound to <C-c C-p> and csound-
render bound to <C-c C-r>. Running those functions pops up compilation buffer
that gives user all logs printed to stdout and stderror from the command. Calling
csound-play is the same as if csound -odac file.csd would be typed into the
command line while csound-render would equal to csound -o filename.wav
filename.csd where csound-mode will prompt the user for a filename before
rendering.

When starting Csound REPL via csound-start-repl a new buffer called *Csound
REPL* will open. This buffer is running on CsoundInteractive for major-mode
and comint-mode as minor mode. comint-mode provides a prompt functionality,
enabling evaluation of the user input into the prompt, as well as storing history
of the commands given to the prompt. As of current version, score statements
are the only commands that the prompt understands, this is expected to be
extended in future versions.

With an open REPL buffer, a Csound instance is running in the background with

6 Hlöðver Sigurðsson

indefinite performance time. Through this Csound instance, live-coding and/or
live-interaction can take place, trough two different functions bounded to keys.
Which are csound-evaluate-region bound to <C-M-x> and csound-evaluate-line
bound to <C-x C-e>.

csound-evaluate-region is more dynamic of the two, it tries to recognize a
Csound score or orchestra statement at the point of cursor, which may or may
not cover multiple lines. After a Csound statement is recognized, the string is sent
to forementioned Csound instance to be evaluated, followed by a "special effect"
where the code that was recognized gets highlighted for a sub-second. The result
of this operation should get printed immediately into the REPL buffer, where
Csound may print syntax errors if one were found. csound-evaluate-line does the
same, but will only evaluate the current line of the cursor. csound-evaluate-line
could be more convenient to run within score blocks, as csound-evaluate-region
will send all the score statements separated by newline into the Csound instance.
As a use-case example, a composer has with these functions the possibility to
compose short phrases/bars at a time, separated by newlines and have Csound
play immediately the evaluated phrase, as well as evaluating one single score line
to hear how one note sounds within a block of notes.

Note that csound-mode has a built-in transformation of the score-blocks that
are being evaluated. Trough this transformation the lowest value of p2 in the
score-block is subtracted from all p2 and p3 fields. This eliminates all waiting
time for scores-blocks that have long starting time (high p2 value), but could in
some cases be unwanted, in which case playing the file "offline" via csound-play
could be more suitable option.

6 Conclusion

csound-mode is new and growing package that provides set of functionalities
aimed to enhance the flow of the composer. csound-mode is developed by a
seasoned Emacs user for Emacs users, which may set a barrier for potential
new users of csound-mode without prior knowledge of the text editor Emacs.
Unlike CsoundQt, csound-mode does not come with Csound Manual lookup
functionality and provides only short documentation snippets via autocomplete
and eldoc-mode. csound-mode is also the only Emacs package for Csound that
is now available on MELPA, which is the largest package manager for Emacs
packages. Being a new package, it’s not battle tested and has potentially bugs,
which is why I think it’s important that csound-mode has a github page where
future users can report bugs, suggest improvements and submit pull-requests.
Something that other Emacs packages for Csound have lacked up to this point.

References

1. Steven Yi. csound-repl.vim. https://github.com/kunstmusik/csound-repl, 2016.
2. Mickey Petersen. What’s new in emacs 25.1. https://www.masteringemacs.org/

article/whats-new-in-emacs-25-1, 2016.

https://github.com/kunstmusik/csound-repl
https://www.masteringemacs.org/article/whats-new-in-emacs-25-1
https://www.masteringemacs.org/article/whats-new-in-emacs-25-1

Interactive coding with Emacs 7

3. Michael Gogins. Steel bank common lisp ffi interface to csound.h. https://github.
com/csound/csound/blob/7b4cebf8cf0a3f49232123ee3d752db2116c4c6c/
interfaces/sb-csound.lisp, 2017.

4. Hlöðver Sigurðsson. Emacslisp link to csound’s api via emacs modules. https:
//github.com/hlolli/csoundAPI_emacsLisp, 2017.

5. Stéphane Rollandin. Csound-x for emacs. http://www.zogotounga.net/comp/
csoundx.html, 2015.

6. John ffitch. Emacs-macros. http://www.cs.bath.ac.uk/pub/dream/utilities/
Emacs-macros/, 2003.

7. Artur Malabarbara et al:. aggressive-indent-mode. https://github.com/
Malabarba/aggressive-indent-mode, 2017.

https://github.com/csound/csound/blob/7b4cebf8cf0a3f49232123ee3d752db2116c4c6c/interfaces/sb-csound.lisp
https://github.com/csound/csound/blob/7b4cebf8cf0a3f49232123ee3d752db2116c4c6c/interfaces/sb-csound.lisp
https://github.com/csound/csound/blob/7b4cebf8cf0a3f49232123ee3d752db2116c4c6c/interfaces/sb-csound.lisp
https://github.com/hlolli/csoundAPI_emacsLisp
https://github.com/hlolli/csoundAPI_emacsLisp
http://www.zogotounga.net/comp/csoundx.html
http://www.zogotounga.net/comp/csoundx.html
http://www.cs.bath.ac.uk/pub/dream/utilities/Emacs-macros/
http://www.cs.bath.ac.uk/pub/dream/utilities/Emacs-macros/
https://github.com/Malabarba/aggressive-indent-mode
https://github.com/Malabarba/aggressive-indent-mode

Chunking: A new Approach to Algorithmic
Composition of Rhythm and Metre for Csound

Georg Boenn

University of Lethbridge, Faculty of Fine Arts, Music Department
georg.boenn@uleth.ca

Abstract. A new concept for generating non-isochronous musical me-
tres is introduced, which produces complete rhythmic sequences on the
basis of integer partitions and combinatorics. It was realized as a command-
line tool called chunking, written in C++ and published under the GPL
licence. Chunking1 produces scores for Csound2 and standard notation
output using Lilypond3. A new shorthand notation for rhythm is pre-
sented as intermediate data that can be sent to different backends. The
algorithm uses a musical hierarchy of sentences, phrases, patterns and
rhythmic chunks. The design of the algorithms was influenced by recent
studies in music phenomenology, and makes references to psychology and
cognition as well.

Keywords: Rhythm, NI-Metre, Musical Sentence, Algorithmic Compo-
sition, Symmetry, Csound Score Generators.

1 Introduction

There are a large number of powerful tools that enable algorithmic composition
with Csound : CsoundAC [8], blue[11], or Common Music[9], for example. For
a good overview about the subject, the reader is also referred to the book by
Nierhaus[7]. This paper focuses on a specific algorithm written in C++ to produce
musical sentences and to generate input files for Csound and lilypond.

Non-isochronous metres (NI metres) are metres that have different beat
lengths, which alternate in very specific patterns. They have been analyzed by
London[5] who defines them with a series of well-formedness rules. With the
software presented in this paper (from now on called chunking) it is possible
to generate NI metres. It is even possible to construct sequences of changing
NI metres, which are held together by an over-arching musical concept, namely
tension and release. Thakar[10] coined the terms ’impact and resolution’ for he
is concerned with the phenomenological dynamics of musical energy. In his the-
ory, several factors can contribute to the build-up and decline of musical energy;
contrast between rhythmic values is one of them. Chunking was designed specifi-
cally to implement the directed impact and release of musical energy in rhythm,

1 https://github.com/gboenn/chunking
2 www.csounds.com
3 www.lilypond.org

https://github.com/gboenn/chunking
www.csounds.com
www.lilypond.org

2 Georg Boenn

thereby enabling the composition of musically interesting rhythmic sentences.
Further inspiration was drawn from the analysis of Eastern-European rhythmics,
notably the Aksak4 rhythms that were studied by Arom[1] and Brăiloiu[2], for
example. The theory of Aksak offers prime examples of NI metres. An Aksak
metre can be described as a multi-set of beats that are either 2 or 3 pulses long,
for example {2, 2, 2, 3}.

Miller[6] made an important discovery in the field of cognitive psychology by
finding a ‘magic number’ that reappeared again and again in various experiments
to test the capacity of human cognition and memory. The number 7 ± 2 seems
to accurately describe how many items can be held in short-term memory. This
number can be increased by a technique called ‘chunking’. If a long list of items is
cognitively separated into groups (chunks) it will be easier for the mind to grasp,
memorize and to reproduce the entire list correctly. Gobet[3] and others have
expanded Miller’s theory. Their model includes a template mechanism, which
allows for slots with variable content in addition to a core of chunks. A chess
position, for example, is memorized by building chunks of pieces in the mind,
which group together via proximity. There is a certain number of fixed chunks
(groups of chess pieces), but also slots which may contain a different variation
of a chunk. In this case only a pointer is needed that will lead to the right chunk
in long term memory. Chunks and templates facilitate information processing in
our minds. The algorithm we describe in this paper makes use of both concepts
for the creative process of composing rhythmic phrases.

2 The Sentence Algorithm

Chunking uses a top-down approach for generating rhythmically interesting mu-
sical sentences. The software is working on the assumption that musical rhythms
are often based on a small underlying pulsation. There are two main input-
arguments for chunking: First, the number of pulses n ranging between 1 and 120.
Secondly, the number of distinct parts k can range between 1 and 5. The output
of chunking consists of a series of recursive partitions of n into k parts. A partition
of an integer n is simply any sum of integers < n resulting in n, for example 16 =
7 + 5 + 4, which is a partition into three distinct parts (k = 3). For the reminder
of the paper, partitions will be written as (multi-)sets of integers with subscript
n.5 Chunking creates a single musical sentence of length n by partitioning n into
k phrases. Phrases are further partitioned into at most k patterns, which finally
partition into chunks of 2s and 3s. The proposed hierarchy of all musical com-
ponents is: Sentence, Phrases, Patterns, Chunks. The algorithm is designed to
make sure that the lengths of the components on each level are always co-prime.
For example, Sentence{19}, Phrases{10, 9}19, Patterns{{7, 3}10, {4, 5}9}19,
Chunks{{{3, 2, 2}7, {3}3}10, {{2, 2}4, {3, 2}5}9}19. After experimentation it was
found that the co-primality between individual parts of a rhythmic sentence is
a condition, which yields the best musical results amongst partitions because of

4 The term Aksak is Turkish and means ‘limping’
5 For example, {7, 5, 4}16 is equivalent to writing 16 = 7 + 5 + 4.

Chunking: Algorithmic Composition and Csound 3

the high amount of rhythmic impulse and resolution (tension and release) that
can be generated. With the same reasoning, the algorithm searches for the par-
tition whose distribution of distinct parts is as close as possible. This is achieved
by making sure that the standard deviation, σ, is as small as possible. If all dis-
tinct parts are in an arithmetic progression with ∆ = 1, for example: {7, 6, 5}18,
then σ ≈ 0.816497 reaches its smallest value amongst all partitions of 18 with 3
distinct parts (of course, for other n, ∆ and σ can be very different). In this lit-
tle example, all conditions for searching a partition have been met: Co-primality
of distinct parts, and the lengths of the parts are closest together. Partitions
like these are the basis for the unique phrase and pattern lengths within the
sentences.

Because the parts in all partitions are ordered from high to low integers,
chunking reorders them into a musical triangle. A musical triangle is a special
order of values where the largest one is in a central position, and the smaller
values are leading up towards the central peak, and descending thereafter. For
example, {1, 2, 4, 3}, or {2, 3, 4, 6, 5, 1}. There are fourteen musical triangles of
this kind for the reordering of all partitions with three to seven distinct parts.
Partitions with only two parts are being swapped randomly.

The next iteration uses these re-ordered partitions and constructs the lower
structural level: patterns within each of the phrases. A new partition with dis-
tinct parts is generated, one that divides up each phrase length, thus generating
a pattern. Subsequently, for each of the pattern, the re-ordering process applies
again one of the musical triangles.

The final step towards the complete sentence is to take each of the patterns
and to partition them into chunks of two or three pulses in length. 2 and 3 are
the only integers allowed on this level of partitioning. If, for example, a pattern
has the length 7, then the only partition into 2s and 3s is {3, 3, 2}7.6 Larger
n can produce many different partitions of this kind. In order to distinguish
these partitions from the ones we have discussed so far, we call them templates,
where 2s and 3s are the only chunks accepted. In the next step, one can rotate
the templates in a cyclic manner, i.e. {3, 3, 3, 2}11, {3, 3, 2, 3}11, {3, 2, 3, 3}11, and
{2, 3, 3, 3}11 are all rotations of the template {3, 3, 3, 2}11. A template produces
a unique set of combinations. Each one of the combinations has its consequences
on the perception of the rhythm in a musical context, and it falls therefore into
a special musical category.

We have reached the lowest level of the hierarchy, from a sentence to phrases,
to patterns, to chunks. Patterns and phrases are organized according to the sets
of musical triangles, like smaller waves leading to a larger one. With regard to
the templates, i.e. partitions into 2s and 3s, chunking uses several categories
of combinations that are useful for music composition. It is an interesting fact
that the templates are equivalent to a special mathematical structure called
bracelets[4].7 A bracelet is a cyclic pattern with a special order, and although it

6 For a partition, the order of the terms is irrelevant.
7 To form a bracelet, the template itself has to be in its lexicographically lowest rota-

tion.

4 Georg Boenn

can be rotated and also reversed, it would never be equal to any other bracelet
(or template) that has the same sum of its elements, including under rotations
and reverse directions. In general, every partition of n into 2s and 3s, and after
rotation into its lowest lexicographic position, generates a bracelet with a fixed
content.8 In order to compose music using the large amount of possible rhythmic
patterns that emerge from templates, they had to be sorted into seven different
musical categories. The names of these categories reflect the musical forces of
impulse and resolution that govern them and that are a direct consequence of
the specific order of 2s and 3s.

2.1 Seven categories of rhythmic patterns

The seven categories of rhythmic patterns are resistor, release, arch, catenary,
growth, decline, and alternating. The resistor pattern consists of one or more 2s
followed by one or more 3s. For example, here is a resistor based upon a partition
of 12: {2, 2, 2, 3, 3}12. The name reflects the phenomenon that the transition from
a pulsation of 2s into a pulsation of 3s forms a resistance against the flow of the
binary pulsation.9 We experience a fundamental change from binary to ternary
pulsation. This phenomenon creates musical impulse, a force that is balanced at
a later stage by a corresponding resolution.

The release pattern is the opposite form of the above: One or more 3s are
followed by one or more 2s, for example {3, 2, 2, 2}9, which is derived from a
partition of 9. If one combines the resistor patterns with a release pattern, you
obtain the arch pattern. This is a natural consequence of the fact that a musical
impulse is counter-balanced by a force of release, similar to the situation where
the force of pulling a spring out of its equilibrium position is opposed by the
spring-force, which will return the system back to its original state as soon as
the spring has been released. We call this configuration arch, because one or
more 2s are surrounding one or more 3s. Example: {2, 2, 3, 3, 3, 2, 2, 2}19 As it is
the case with all the other patterns, the length of an arch can vary.

The shape opposite to the arch is the catenary10, which is a combination
of the release pattern followed by the resistor pattern. It has one or more 3s
surrounding one or more 2s, for example: {3, 3, 2, 2, 2, 3}15.

A growth pattern has, for example, this structure: {2, 3, 2, 2, 3, 2, 2, 2, 3}21.
Here, an initially small resistor pattern, {2, 3}5, grows by inserting more and
more 2s in front of the 3 at each repetition. There are many possible variations of
this pattern, for example, one could let only the 3s grow: {2, 3, 2, 3, 3, 2, 3, 3, 3}24.
Or, one could develop both at the same time: {2, 3, 2, 2, 3, 3}15. The maximum
length for a growth pattern in the top-down approach is twenty-five pulses with

8 An efficient algorithm for generating bracelets has been published by Karim et al.[4].
9 Inspiration for the name came from the field of Electronics with regard to the resis-

tance against the flow of electric charges.
10 “In physics and geometry, a catenary is the curve that an idealized hanging chain

or cable assumes under its own weight when supported only at its ends.” (see fx-
solver.com)

Chunking: Algorithmic Composition and Csound 5

a maximum of nine elements. This is a consequence of applying Miller’s ‘magic
number’. It is easy to see that one could chain resistor patterns together in order
to form a phrase or an entire sentence as one large growth structure.

The decline pattern is like the growth pattern, only the direction is reversed.
We start with a relatively long pattern, and recursively subtract elements from
it. Example: {2, 3, 3, 3, 2, 3, 3, 2, 3}24. Finally, the alternating pattern consists of
repeating a smaller pattern of 2s and 3s, for example {3, 2, 2, 3, 2, 2}14.

2.2 Shorthand notation for rhythm as an intermediate output
format

On the basis of the resulting 2-3 patterns discussed above, a technique is now
presented for breaking down the binary and ternary chunks into specific rhythmic
chunks. Chunking uses all possibilities of beats within a grid of either 2 and 3
pulses. The complete list of binary and ternary rhythm chunks is shown in table 1
along with binary and shorthand representations. For each 2 and 3 in a pattern, a
weighted random choice is being made from the list of binary or ternary chunks.
The probability weighting of the chunks is a matter of personal choice. After
experimentation it was found that the probability of chunks that start with a
rest had to be reduced, otherwise there would have been too much dissociation
between the rhythmic patterns.

Table 1. Set of symbols for rhythmic chunks.

Symbol Transcription Binary Form Category

. ˇ “(1 unary

I ˇ “ 10 binary

: ˇ “(ˇ “(11

v ? ˇ “(01

X ˇ “(ˇ “ 110 ternary

> ˇ “ ˇ “(101
< ? ˇ “ 010

w ? ? ˇ “(001

+ ? ˇ “(ˇ “(011

i ˇ “(ˇ “(ˇ “(111
− ˇ “‰ 100

˜ e.g. I ˜ I = ˘ “ 1000 tie

() e.g. (X) I = > ‰ ˇ “ 00010 silence

The shorthand notation is a useful intermediate output of chunking. The
notation is human readable and can be sent as a C++ string to an appropriate
translator object that decodes the notation and generates automatically code

6 Georg Boenn

for csound score events listed under the score section of a csd file. The csound
#include directive is very useful here. The translator is also capable of generating
a lilypond file, for which we can give a practical example in figure 1. It has the
following structure: Sentence{37}, Phrases{19, 18}, Patterns{{10, 9}, {7, 11}},
Chunks{{{3, 3, 2, 2}, {2, 2, 2, 3}}, {{2, 2, 3}, {2, 2, 3, 2, 2}}}

Fig. 1. A sentence with 37 pulses generated with chunking and rendered with lilypond.
The conductor signs show the metric grouping in beats that are 2 or 3 pulses long.

3 The Csound score output

In order to add a musical performance quality to the synthesis, chunking adds
phrase envelopes and an overarching sentence envelope. Phrase envelopes modify
the overall amplitude of a phrase, and are calculated to reach a climax at the
beginning of the second half of the phrase. The expseg envelope is used in the
orchestra code.11 The sentence envelope modifies the overall amplitude of the
sentence and uses the cosseg opcode. Its climax is reached at the point when the
first half of the phrases has just ended (rounded up for odd numbers of phrases).
For example, if the sentence has five phrases, the envelope reaches its climax at
the beginning of the fourth phrase. The time parameters for the envelopes are:
total length, ascending, and descending phrase lengths in seconds. In order to
control independent phrase and sentence envelopes, their effect is programmed
into separate instruments, away from the sound generating source. This modular
approach uses Csound ’s global audio variables.

4 Conclusion

Chunking ’s algorithm creates rhythmic sentences that subdivide into phrases,
patterns of binary and ternary chunks, and it generates the specific composition
of rhythms based on these chunks. The algorithm uses a top-down approach
based on partitions, bracelets and seven musical categories of patterns. It adheres
to Miller’s magic number on multiple levels and it uses the concept of chunks and
templates for musical variation. It further generates musical phrasing envelopes
for Csound synthesis. The output in a general notation format helps to navigate
choices during the composition process. That process does not stop with the
output of chunking, but uses its material to compose entire pieces of music.

11 Example csd files are provided with the source code.

Chunking: Algorithmic Composition and Csound 7

References

1. Arom, S.: L’aksak: Principes et typologie. Cahiers de Musiques Traditionnelles 17
(Formes musicales): 11–48 (2004)

2. Brăiloiu, C.: Le rythme Aksak. Revue de Musicologie 33(99 and 100) (December),
71–108 (1951)

3. Gobet, F. and Simon, H. A.: Templates in Chess Memory: A Mechanism for Recall-
ing Several Boards. Cognitive Psychology 31(1), 1–40 (1996)

4. Karim, S. et al.: Generating bracelets with fixed content. Theoretical Computer
Science, 475, 103-112 (2013)

5. London, J.: Hearing in Time. Psychological Aspects of Musical Meter, 2nd edn.
Oxford University Press, Oxford (2012)

6. Miller, G. H.: The Magical Number Seven, Plus Or Minus Two: Some Limits on
Our Capacity for Processing Information. Psychological Review, 63, 81–97 (1956)

7. Nierhaus, G.: Algorithmic Composition: Paradigms of Automated Music Genera-
tion, Springer, Wien (2010)

8. Phillips, D.: Introducing CsoundAC: Algorithmic Composition With Csound And
Python. Linux Journal [online] (2010), http://www.linuxjournal.com/content/

introducing-csoundac-algorithmic-composition-csound-and-python

9. Taube, H. K.: Notes from the Metalevel, Taylor & Francis, London and New York
(2004)

10. Thakar, M.: Looking for the ”Harp” Quartet: An Investigation into Musical Beauty,
University of Rochester Press (2011)

11. Yi, S.: blue: a music composition environment for Csound http://blue.

kunstmusik.com

http://www.linuxjournal.com/content/introducing-csoundac-algorithmic-composition-csound-and-python
http://www.linuxjournal.com/content/introducing-csoundac-algorithmic-composition-csound-and-python
http://blue.kunstmusik.com
http://blue.kunstmusik.com

Interactive Visual Music with Csound and
HTML5

Michael Gogins1

Irreducible Productions
michael.gogins@gmail.com

Abstract. This paper discusses aspects of writing and performing in-
teractive visual music, where the artist controls, in real time, a comput-
erized process that simultaneously generates both visuals and music. An
example piece based on Csound and HTML5 is presented.

Keywords: Visual music, generative art, algorithmic composition, com-
puter music, Csound, HTML5

1 Introduction

This paper presents an approach to writing interactive visual music using Csound
[1] [2] [3] with HTML5. Artistic and technical problems are discussed, and some
solutions are presented in the context of an example piece [4] that runs on
csound.node [5] [6], currently the most stable and highest-peforming HTML5
environment for Csound. These techniques also work in Csound for Android [7]
[8], PNaCl [9] [10], Emscripten [11] [12], and WebAssembly [14] [6]. In all these,
Csound appears in the JavaScript context as a csound object that exposes the
Csound API [15]. Note: By 2018 or so browsers are expected to have deprecated
all other “native” execution environments in favor of WebAssembly.

HTML5 is the programming environment of current Web browsers. It is
a world standard [16] with vast capabilities [17] that are programmable in
JavaScript [18] [19]. In addition to HTML and JavaScript for defining user in-
terfaces, features relevant to visual music include three-dimensional, animated
computer graphics (WebGL) and high-resolution audio (WebAudio).

Visual music can mean (a) purely visual displays having a music-like evolu-
tion in time; (b) visualizations of music; or (c) a hybrid art in which the author,
perhaps using software or other automatic processes, generates both visual and
musical forms. This last type is the subject of this paper — in particular, where
one process is performed interactively, in an improvisational way, to generate
both visuals and sounds. In any case, visual music tends to abstraction, other-
wise it would be no different from music videos.

The pioneers of visual music were the typical lot of visionary outsiders [20].
Walt Disney’s Fantasia [21] showed stellar examples. Later, experimental film-
makers created some visual music [22], still later light shows [23] became stan-
dard at concerts of psychedelic music, and from the late 1970s the demoscene

2 Michael Gogins

[24] [25] showed programmed animations with musical accompaniment, some of
high quality. Visual music became notable in computer music starting perhaps
with Circles and Rounds by Dennis Miller at the 2006 ICMC [26].

2 Technical Problems (and Some Solutions)

Artistic issues are more important than technical ones, but technology must be
discussed first as it is the foundation for the art. Historically the technical issues
with visual music have been expensive tools, expensive labor, and incompatible
standards. As computer power has doubled and redoubled every year or so, the
problem of expensive tools has been mooted, the problem of expensive labor has
not changed, and the problem of incompatible standards has perhaps worsened.

Visual music started with painting both images and sounds by hand on movie
film. Then of course hand-drawn animation became highly developed, followed
by all kinds of tricks used in experimental film. Eventually these were built
into hardware for editing film or video with “effects,” and then into software
for computer animation. Today these technologies are collected in commercial
applications such as 3ds Studio Max [27], open source software such as Blender
[28] and Processing [29], and game engines such as Unreal [30] and Unity [31].
But this profusion of tools has not solved the problem of labor – see the amazing
list of credits for any blockbuster animated film – and also has contributed to
the problem of incompatible standards. As in other computer-based arts, there
is now a Babel of applications and languages that tends to fragment the field as
different artists choose different software for different reasons, and thus lose the
ability to understand each other on a technical level.

All the above-mentioned software packages are just different containers for
the same algorithms: time lines, scene graphs, texture mappings, shaders, con-
volvers and filters, software synthesizers, etc. And these are all present in the
JavaScript context of standard Web browsers where they run at high speed by
virtue of SIMD, GLSL, and expertly written C++. In short, HTML5 offers a
viable solution to the problems of expensive tools and incompatible standards.

Blender, Processing, and the Unity engine offer similar solutions but, as
Csound is arguably the most powerful software synthesizer and can be used
directly in HTML5 via csound.node or Csound for WebAssembly, Csound in
HTML5 offers a standards-based, high-performance platform for visual music.

Technical issues arise not only from the platform, but also from the artistic
objectives. These are considered in the next section.

But first, here is an overview of the architecture of the example piece [4] run-
ning in csound.node (similar designs would work in any other Csound/HTML5
environment). The piece itself is one Web page with all code, including Csound
itself and the Csound orchestra [4, lines 87-239], either embedded in the page
or loaded locally. The user interface consists of sliders and key bindings with
JavaScript event handlers, defined using the dat.gui library [32] [4, lines 1172-
1219]. An embedded style sheet formats the elements [4, lines 7-52]. The gener-
ating process is a real-time GLSL [33] animation, a “shader toy” [34] adapted

Visual Music with Csound 3

from the work of lomateron [35], which computes an animated fractal at excep-
tionally high speed on the massively parallel, dedicated GPU of the computer
[4, lines 240-297]. JavaScript code samples pixels from the drawing buffer in real
time [4, lines 994-1030] and translates them into musical notes [4, lines 974-992]
that are sent to a running instance of Csound, which is called by the WebAudio
driver to play the sound.

3 Artistic Problems (and Some Solutions)

In visual music, usually the music comes first and then the visuals (“light
shows”), or the visuals come first and then the music (experimental films or
demos with derivative music). Either way, one half of the visual music equation
usually suffers by comparison with the other half. In theory, this imbalance can
be righted by generating both visuals and music from the same process:

1. Both visuals and music are generated by the same underlying, more abstract
process. This is rare, as usually the processes have already been designed for
one purpose or the other.

2. The music generator is sampled or processed to also generate the visuals.
This is quite common.

3. The visual generator is sampled or processed to also generate the music. This
is not so common, but not unknown.

Understanding the tradeoffs of the second and third options requires analysis.

3.1 Bandwidth and Format Disparities

Both visuals and music can be digitally processed at different levels of abstrac-
tion. For visuals, the highest level of abstraction consists of scenes of geometric
objects or meshes covered with textures, illuminated by lights, and viewed by a
virtual camera; the lowest level of abstraction is a screen of pixels, a thousand
or so wide and high, presented at up to 60 or so frames per second.

A perspective rendering of three dimensions is very common, and virtual
realities that immerse the viewer in a stereoscopic perspective view are becoming
more common. But for the purposes of visual music, the perspective rendering
and the stereoscopic rendering are the same: a three-dimensional scene.

For music, the highest level of abstraction is the score, which consists of notes
assigned to instruments, which produce actual streams of audio that are further
processed and mixed. There are usually a few to a few dozen discrete notes per
second. (There can be an intermediate level of abstraction not considered here,
grains of sound that stream at a rate of hundreds or thousands per second.) The
lowest level of abstraction is 44,100 to 96,000 frames per second of stereo (or,
increasingly, multi-channel) audio samples.

There are obvious disparities of data formats and rates between visuals and
music. At the highest level of abstraction, dozens to thousands of visual objects

4 Michael Gogins

are moving, but no more than a dozen or so musical notes are moving. At
the lowest level of abstraction, for uncompressed raw data, the bandwidth of
high-definition video is on the order of 3,732,480,000 bits per second, whereas
the bandwidth of uncompressed high-definition stereo audio is on the order of
4,608,000 bits per second. In reality visual data is more redundant than audio
data; a compressed stream of video runs at about 30,000,000 bits per second,
whereas a compressed stream of audio runs at about 500,000 bits per second.
Hence visual bandwidth runs about 60 times audio bandwidth.

Finally, the visuals are not always computed as objects in a scene; they
may be computed directly at the pixel level. This is attractive, because HTML5
environments can execute runtime-compiled “shader” programs, which operate
directly on pixels, on the graphics processing unit (GPU) at much higher speeds
than on the general purpose central processing unit (CPU).

The much greater data bandwidth of visuals is one reason it makes sense to
derive the music from the visuals, instead of the other way round. But then it also
becomes necessary not only to map the visual data to musical parameters, but
also to filter or reduce the density of data – while still preserving a perceptible
relationship between the visuals and the music.

3.2 Mapping, Triggering, and Filtering

“Mapping” actually involves dimensional mapping, filtering to reduce the data
bandwidth, and triggering musical events. Triggered events may in addition be
post-processed, e.g. to tie overlapping notes, or to fit into a harmony.

Dimensional Mapping Mapping visual objects to music is complex, and must
be considered case by case. Such a mapping amounts to using the visuals as a
sort of score for the music. A minimal set of dimensions for visual objects might
be the following. Lower-case letters stand for visual attributes, and upper-case
letters for musical attributes.

t Time Real Seconds from beginning of performance.
x Horizontal Cartesian coordinate Real Arbitrary units
y Vertical Cartesian coordinate Real Arbitrary units
z Depthwise Cartesian coordinate Real Arbitrary units

For mapping visual objects to musical events, musical attributes can be com-
puted from, or even attached to, the objects in the scene, thus reinforcing its
dual role as a score. Mapping visual pixels is more straightforward, as there is
the following fixed set of dimensions:

Visual Music with Csound 5

t Time Real Seconds from beginning of performance
x Horizontal Cartesian coordinate Integer 0 to image width
y Vertical Cartesian coordinate Integer 0 to image heght
h Hue Real 0 through 1
s Saturation Real 0 through 1
v Value (brightness) Real 0 through 1

The dimensions of notes, at a useful minimum, are:

T Time Real Seconds from beginning of performance
I Instrument Integer 0 to IMax

K MIDI key Real KMin through KMax

V MIDI velocity Real VMin through VMax

P Stereo pan Real −1 through 1

Given the dimensional units with their minima and maxima, the actual map-
pings are obvious. For animated visuals [4, lines 922-992]:

T = t

I = b1 + x/xMaxc
K = b(y/yMax)(KMax −KMin) + KMinc

V = v(VMax − VMin) + VMin

P = s2− 1

Such mappings are necessary but not sufficient. Visual bandwidth is still far
greater than musical bandwidth, so the number of events must be cut down even
further without breaking the perceptible relation between visuals and music.

To accomplish this, musical events can be triggered only from the most salient
visual events. Then, the triggered events can be filtered to further cut down the
number of events.

Triggering In the retina, a neural network specializes in detecting edges. Here,
edges can similarly be used to detect easily perceptible events. (An actual com-
puterized neural network could perhaps be used to identify these features.)

For animated visuals, an edge occurs when, for a single pixel, the color at
frame ft changes at time ft+i. When the value of a pixel changes from a level
below a threshold, to a level at or above that threshold, a note on event is
triggered [4, lines 1017-1020]; and when the value changes from a level at or
above that threshold, to a level below that threshold, a note off event is triggered
[4, lines 1021-1024].

This already reduces the visual bandwidth by a considerable amount, as no
new musical events are generated at a pixel while its color remains stable from
frame to frame, or its value does not cross the threshold.

However, for animated visuals, this still creates too many musical events per
second. Additional filtering or sampling must also be used.

6 Michael Gogins

Filtering and Sampling The kind of filtering or sampling required obviously
differs between objects and pixels. In the case of objects, for example, only the
centers of volume could be considered, or even only a certain level of ramification
in the tree of objects in the scene graph. In the case of pixels, which is considered
here, the actual grid of pixels can be sampled at some modulus of its width and
height [4, lines 1003-1007], or along radii from the center, or so on. If only every
1000th pixel is sampled, the artistic intelligibility of the relationship between the
visuals and the music may suffer; this must be judged case by case. To restore
intelligibility, the sizes of visual features can perhaps be increased.

Experience shows that the correlation between visual and musical events need
by no means be constant. If there is some perceptible synchrony every bar or so,
that seems to do the job.

4 Improvisational Control

The whole purpose of the approach to visual music discussed here is to put on
a show: to improvise a work of visual music involving both visual and audible
forms.

For a single performer to do this, the controls must be manageable. The
computer mouse and keyboard provide a limited palette of control gestures.
But if the process generating the visual music is a fractal or recursive process
controlled by a few numerical parameters, a few gestures suffice for playing [4,
lines 1312-1346]. A few key combinations can also be dedicated to changing the
arrangement or tonality of the music, for example by applying voice-leading
transformations that generate chord progressions in the music [4, lines 1279-
1309].

References

1. Csound home page, http://csound.github.io

2. Lazzarini, V. et al.: Csound: A Sound and Music Computing System. Springer (2016)

3. Boulanger, R. (ed.): The Csound Book. The MIT Press (2000)

4. AuthorA: Csound Visual Music Example, https://AuthorA.github.io://csound/
csound_visual_music.html. This piece requires NW.js and csound.node to run.

5. NW.js, https://nwjs.io/.

6. Gogins, M.: csound.node, https://github.com/csound/csound/tree/develop/

frontends/nwjs.

7. Yi, S. and Lazzarini, V.: Csound for Android. In: Proceedings of the Linux Audio
Conference 2012, pp. 29-34. Stanford (2012).

8. Csound for Android App, https://play.google.com/store/apps/details?id=

com.csounds.Csound6&hl=en.

9. NaCl and PNaCl, https://developer.chrome.com/native-client/

nacl-and-pnacl.

10. Csound for PNaCl, https://github.com/csound/csound/tree/develop/nacl.

11. emscripten, http://kripken.github.io/emscripten-site/.

http://csound.github.io
https://AuthorA.github.io://csound/csound_visual_music.html
https://AuthorA.github.io://csound/csound_visual_music.html
https://nwjs.io/
https://github.com/csound/csound/tree/develop/frontends/nwjs
https://github.com/csound/csound/tree/develop/frontends/nwjs
https://play.google.com/store/apps/details?id=com.csounds.Csound6&hl=en
https://play.google.com/store/apps/details?id=com.csounds.Csound6&hl=en
https://developer.chrome.com/native-client/nacl-and-pnacl
https://developer.chrome.com/native-client/nacl-and-pnacl
https://github.com/csound/csound/tree/develop/nacl
http://kripken.github.io/emscripten-site/

Visual Music with Csound 7

12. Csound for Emscripten, https://github.com/csound/csound/tree/develop/

emscripten.
13. WebAssembly, http://webassembly.org/.
14. Csound for Emscripten (for WebAssembly see build-wasm.sh). https://github.

com/csound/csound/tree/develop/emscripten.
15. Csound API, http://csound.github.io/docs/api/index.html.
16. HTML5, https://www.w3.org/TR/2016/REC-html51-20161101/.
17. HTML 5 Test, https://html5test.com/.
18. ECMAScript 2016 Language Specification, http://www.ecma-international.

org/ecma-262/7.0/index.html.
19. Flanagan, D.: JavaScript: The Definitive Guide (6th ed.). O’Reilly (2011).
20. Brougher, K. et al.: Visual Music. Thames & Hudson (2005).
21. Culhane, J. and Walt Disney Productions: Walt Disney’s Fantasia. H.N.Abrams

(1983).
22. Rees, A.L.: A History of Experimental Film and Video (2nd ed.). British Film

Institute (2011).
23. The Joshua Light Show, http://www.joshualightshow.com/about.
24. Demoscene Research, http://www.kameli.net/demoresearch2/.
25. Demoscene Portal, http://www.demoscene.info/the-demoscene/.
26. International Computer Music Association: International Computer Music Con-

ference (2006).
27. 3ds Studio Max, https://www.autodesk.com/products/3ds-max/overview.
28. Blender, https://www.blender.org/.
29. Processing, https://www.processing.org/.
30. Unreal Engine, https://www.unrealengine.com/.
31. Unity, https://unity3d.com/.
32. dat.gui, https://github.com/dataarts/dat.gui.
33. Kessenich, J.: The OpenGL Shading Language: Language Version 4.50. The

Khronos Group (2016).
34. Shadertoy, https://www.shadertoy.com/.
35. lomateron: Lights pattern generator, https://www.shadertoy.com/view/Xl3SzB.
36. Tasajarvi, L: Demoscene: The Art of Real Time. Even Lake Studios (2004).

https://github.com/csound/csound/tree/develop/emscripten
https://github.com/csound/csound/tree/develop/emscripten
http://webassembly.org/
https://github.com/csound/csound/tree/develop/emscripten
https://github.com/csound/csound/tree/develop/emscripten
http://csound.github.io/docs/api/index.html
https://www.w3.org/TR/2016/REC-html51-20161101/
https://html5test.com/
http://www.ecma-international.org/ecma-262/7.0/index.html
http://www.ecma-international.org/ecma-262/7.0/index.html
http://www.joshualightshow.com/about
http://www.kameli.net/demoresearch2/
http://www.demoscene.info/the-demoscene/
https://www.autodesk.com/products/3ds-max/overview
https://www.blender.org/
https://www.processing.org/
https://www.unrealengine.com/
https://unity3d.com/
https://github.com/dataarts/dat.gui
https://www.shadertoy.com/
https://www.shadertoy.com/view/Xl3SzB

Spectral and 3D spatial granular synthesis in
Csound

Oscar Pablo Di Liscia

1 Programa de Investigación Sistemas Temporales y Síntesis Espacial de Sonido, PICT-
2015-2604, Escuela Universitaria de Artes, UNQ, Argentina.

odiliscia@unq.edu.ar

Abstract. This work presents ongoing research based on the design of
an environment for Spatial Synthesis of Sound using Csound through
granular synthesis, spectral data based synthesis and 3D spatialisation.
Spatial Synthesis of Sound may be conceived as a particular mode of
sonic production in which the composer generates the sound together
with its spatial features. Though this type of conception has long lived
in the minds and work of most composers (specially in electroacoustic
music), some strategies applied here were inspired by the work of Gary
Kendall [13]. Kendall makes specifc mention to both Granular Synthe-
sis and Spectral data based synthesis as examples of resources through
which the composer may partition the sonic stream in both the time do-
main and the frequency domain, respectively. These procedures allow a
detailed spatial treatment of each one of the obtained parts of a sound
which, in turn, may lead to realistic or unusual spatial images. The aim
is not to describe in detail granular synthesis, nor spectral data based
synthesis or sound spatialisation techniques, but to describe the particu-
lar strategies in the design for the aforementioned purposes.

Keywords: Spectral data based synthesis, granular synthesis, sound
spatialisation.

1 Introduction and theoretical background

This work presents an environment for Spatial Sound Synthesis (from here on
abbreviated as SSS) using Csound through granular synthesis, spectral data
based synthesis and 3D spatialisation. This is a part of the author’s ongoing re-
search project, in which one of the main objectives is the development of soft-
ware for high level programming environments (such as Csound, Pure Data and

Super Collider) for SSS. Another of the software developments being pursued
was already presented in Di Liscia [5]. The techniques of Granular Synthesis,
Spectral Data Based Synthesis and Spatialisation will not be treated in detail,
since those are well known subjects in Computer Music and Digital Signal Pro-
cessing1.

SSS2 may be conceived as a particular mode of sonic production in which the
composer generates the sound together with its spatial features. Though this
type of conception has long lived in the minds and work of most composers
(specially in electroacoustic music), some strategies applied here were inspired
by the work of Gary Kendall [13]. Analyzing the function of sound spatialisation
in electroacoustic music, Kendall places signifcant emphasis on the interplay be-
tween the perceptual grouping and the spatial features of sound. He makes spe-
cifc mention of both granular and spectral data based synthesis, as examples of
resources through which the composer may partition the sonic stream in both
the time domain and the frequency domain, respectively. These procedures allow
a detailed spatial treatment of each one of the obtained parts of a sound which,
in turn, may lead to realistic or unusual spatial images. Since granular synthesis
may modify the “normal” time development of a sound it may be used, along
with spatialisation, to generate ambiguities related with the number of virtual
sources and their spatial projection. On the other hand, spectral data based syn-
thesis in conjunction with spatial processing makes possible the modifcation of
the spatial projection of the spectral components also leading to the aforemen-
tioned ambiguities.

Generally speaking, Granular Synthesis (from here on abbreviated as GS) is a
technique based on the juxtaposition of small portions (called grains) of a source
audio signal. In a typical GS application, the user is allowed to set (and eventu-
ally change over time) several parameters of a grain sequence, the most common
of which are: duration, temporal gap, source audio signal, amplitude envelope,
peak amplitude, and pitch shifting. The use of GS on electroacoustic and audio
visual creation is very well known and widely documented (see, among others,
Roads [21], Batty et al [2], and Del Campo [4]), as well as electronic works by
many composers. There are many excellent GS opcodes in Csound some of the
most important being sndwarp, granule and partikkel, [8]).

Sound synthesis using spectral data may compromise several analysis tech-
niques, but some of the most well-known and used are based on the Fast Fourier
Transform (FFT) analysis (See Moore [17], Embree & Kimble [6], Moorer [18],

1 Some appropriate references on each one will be provided in the next section.
2 To the knowledge of the author, the frst authors that coined the name of Spatial

Sound Synthesis were Bresson and Schumacher [3].

and Wessel & Risset [26]). High resolution analysis combined with a model
which attempts to represent the attributes of a sound taking into account its de-
terministic and stochastic parts is also a well known improvement of FFT based
analysis techniques (see [7], [20] and [23]). Csound provides several opcodes for
FFT-based Analysis-Synthesis, some of the most important being the groups of
opcodes for pvoc, pvsanal [9] and ATS [10] [20].

Sound spatialisation by computer means involves a huge group of techniques
and resources. In the opinion of the author, these may be classifed in three
groups: a) the ones related to the virtual sources location, b) the ones related to
the sources directivity, and c) the ones related to rooms/environments. Csound
offers several excellent opcodes for source location and room/environment treat-
ment. For the former, it is possible to use the intensity panning [14], [15], the
VBAP [21] and the Ambisonics [16] techniques. The latter may be achieved via
several pre-designed reverberators, using networks of IIR flters, multitaps and
delay units connected in series and parallel, or performing fast convolution [11]
with impulse responses of rooms / environments. The spat3d opcode [25] pro-
vides 3D sound spatialisation of both the direct signal and the early echoes.

2 Per grain 3D spatialisation and spectral GS in Csound

Though Csound provides several very powerful GS opcodes, none of them
makes feasible individual 3D spatialisation and spectral treatment of overlapping
grains in a way that the author found suitable for his purposes. Fortunately,
Csound provides all the opcodes and resources required to design a GS environ-
ment with the capacity of individual processing of each grain generated. The en-
vironment that will be presented includes an instrument that implements GS
(the_grainer) by calling recursively another instrument (the_grain) that gener-
ates each grain with its own spectral and 3D spatial features, and another in-
strument (greverb) that provides multi-channel reverberation for the complete
stream of grains. In what follows, the details of each one of the mentioned in-
struments, their capacities, and their interaction are discussed.

the_grainer instrument is the part of the GS environment that creates a
stream of grains computing all its features and calling with the appropriate pa-
rameters another instrument (the_grain) that will be described in the next sec-
tion. The parameters involved are the usual ones in GS synthesis, plus the ones
related to 3D spatialisation and spectral features. The user may set the grain’s
duration, audio source sound fle, amplitude envelope function, temporal gap,
peak amplitude, audio starting read point on the audio source sound fle, pitch

transposing, spatial location (azimuth angle, elevation angle and distance) and
spectral features (these will be further explained).

For each one of the aforementioned parameters, there is the possibility of set-
ting a base value plus a random deviation value that may change over the grain
stream. There are, at present, four ways of setting these two values, which are
handled by ad hoc macros for the user convenience (details can be found in the
source code an its documentation). The audio source for the grains must be, at
present, a sound fle. The user may, however, have a “pool” of audio source
sound fles out of which a particular audio source sound fle for each one of the
grains of a stream may be selected by means of the aforementioned methods.

Since for the spectral processing of the grains, the pvsanal / pvsadsyn [9] op-
codes are presently used, there is the possibility of setting the offset bin value,
the bin increment value and the number of bins for the synthesis value which
may also be invariant or change over the duration of the stream of grains.

the_grain instrument synthesizes the grains with the parameters computed
by its caller instrument (the_grainer). The parameters are invariant over the
duration of each grain.

As mentioned, the pvsanal / pvsadsyn opcodes are presently used for the
spectral processing of the grains. The time domain signal of the grain generated
is sent to pvsanal opcode and the frequency domain signal generated by it is
sent to pvsadsyn opcode to generate the time domain signal of the grain with
the spectral modifcations requested.

The spatialisation of the grains is achieved mainly using the Ambisonics [16]
technique through the spat3di [25] and the bformenc1 [12] opcodes. The spat3d
opcode provides 3D sound spatialisation computing both the direct signal and
the early echoes (using the image method [1]) for a virtual source and listener
located into a virtual room whose features must be set by the user in a Csound
Table. The output of this opcode was set to B-Format First Order Ambisonics
(which will produce the four signals usually termed in Ambisonics parlance as
W, X, Y and Z) and the echo recursion was set to 2 (the number of early echoes
computed will be 24 in this case). After that the frst order Ambisonic signals
are encoded using spat3di and stored in the frst four cells of the output array, if
requested, the Second or Third Order Ambisonic B-Format of the direct signal
only is computed using the bformenc1 opcode and the remaining signals3 are
added to the corresponding remaining cells of the output array which will -then-
contain a mixed-order Ambisonic set of signals (MOA). This strategy was al-

3 In the case of Second Order Ambisonic B-Format, these will be the fve signals (R, S,
T, U and B) and, in the case of Third Order Ambisonic B-Format, seven signals (K, L,
M, N, O, P and Q) will be included as well.

ready used by Noisternig et al [19] in order to reduce computational expenses
while also minimizing a potential quality loss in the perceptual results. Gener-
ally speaking, MOA systems take advantage of the human auditory system’s
spatial acuity in the horizontal plane, thus using a higher resolution in this
plane compared to the resolution used for other directions [24]. Though this is
not strictly the case in the present development the aim is similar, since it is
commonly assumed that both, the early echoes and the dense reverberation, re-
quire less spatial defnition than the direct sound.

The output of the instrument is set accordingly to the nchnls variable of
Csound. At present there are four types of possible values: nchnls=2 will set
stereo (UHJ trans-coded) output, whilst nchnls=4, nchnls=9 or nchnls=16, will
set respectively First, Second and Third B-Format Order Ambisonics outputs.

The dense reverberation is achieved by a third instrument (greverb) by means
of fast convolution using the pconvolve [11] opcode.

3 Conclusions and future improvements

The environment presented is in continuous assessment and development. How-
ever, even in the present state, it proved to be a very powerful, perceptually ef-
fective, and versatile tool for SSS applied to electronic composition.4

Since there is not enough space for an extensive treatment on the use of the
environment for SSS, just two cases -taken from the examples included in the
code- will be briefy addressed here. In the frst case a broad frequency band
sound, synthesized granulating a pitched note of a single sound source, performs
a circular movement around the audience. As the movement evolves, the sound
“drops” three specifc audio bands of its frequency components each remaining
steadily in the spatial zones through which their “source” sound has passed. At
the same time, the granulation of each one of the partial bands becomes more
apparent because the duration of the grains becomes gradually smaller than
their gap times. In the second case a sequence of speech sounds is divided into
two granulated streams: one containing vowels and the other containing occlu-
sive consonants. This allows a distinctive spatial treatment of each one and, fur-
thermore, the vowel stream is divided into two frequency bands which are segre-
gated in space differently as well.

4 All the referred Csound code fully commented (and with several examples that the
reader is encouraged to test and analyze) is available at:

 https://github.com/odiliscia/the_grainer

Future developments may include, among other, specifc Ambisonic decoding
stages, the use of higher order Ambisonics orders, the improvements of the dis-
tance cues using specially designed flters, the use of other spectral based tech-
niques and the design of a graphic interface to handle the complexity of the en-
vironment more comfortably.

4 Acknowledgements

The author thanks Universidad Nacional de Quilmes5 and FONCyT6, Argentina,
for the support of this research.

5 References

1. Allen, J. and D. Berkley: Image Method for Efciently Simulating Small Room Acous-
tics. Journal of the Acoustical Society of America, 912–915 (1979).

2. Batty, J., et al: Audiovisual granular synthesis: micro relationships between sound and
image. In: Proceedings of The 9th Australasian Conference on Interactive Entertain-
ment: Matters of Life and Death, pp. 8, Australia (2013).

3. Bresson J., Schumacher, M.: Compositional Control of Periphonic Sound Spatializa-
tion. In: Proceedings of 2nd International Symposium on Ambisonics and Spherical
Acoustics, Paris, France, (2010).

4. Del Campo, Alberto: Microsound. In: Scott Wilson, David Cottle, and Nick Collins
(Eds.) The SuperCollider Book. The MIT Press, London, UK. pp. 463–504 (2010).

5. Di Liscia, Oscar Pablo: Granular synthesis and spatialisation in the Pure Data envi-
ronment. In: PDCon 2016 Proceedings. Waverly Labs, NYU, New York, USA. pp.25–
29. http://www.nyu-waverlylabs.org/pdcon16/proceedings/ (2016).

6. Embree, P. & Kimble, B.: C languaje algorithms for DSP, Prentice Hall, New Jersey,
USA (1991).

7. García, G. and Pampin, J.: Data compression of sinusoidal modeling parameters based
on psychoacoustic masking. In Proceedings of the International Computer Music Con-
ference, Beijin (1999).

8. Heintz, Joachim et al: Csound FLOSS Manual.
http://write.fossmanuals.net/csound/f-granular-synthesis/ (Last access: 05/2017)

9. Heintz, Joachim et al: Csound FLOSS Manual.
http://write.fossmanuals.net/csound/i-fourier-analysis-spectral-processing/ (Last ac-
cess: 05/2017)

5 http://unq.edu.ar
6 http://www.agencia.mincyt.gob.ar/frontend/agencia/fondo/foncyt

10.Heintz, Joachim et al: Csound FLOSS Manual.
http://write.fossmanuals.net/csound/k-ats-resynthesis/ (Last access: 05/2017)

11.Heintz, Joachim et al: Csound FLOSS Manual.
http://write.fossmanuals.net/csound/h-convolution/ (Last access: 05/2017)

12.Heintz, Joachim et al: Csound FLOSS Manual.
http://write.fossmanuals.net/csound/b-panning-and-spatialization/
(Last access: 05/2017)

13.Kendall, Gary: La interpretación de la espacialización electroacústica: atributos espa-
ciales y esquemas auditivos. In: Basso, Di Liscia y Pampin (Eds.): Música y espacio:
ciencia, tecnología y estética. Editorial de la Universidad Nacional de Quilmes (2010).

14.Karpen, R. (1998), Locsig Space opcode Documentation. In: The Csound Manual.
http://www.csounds.com/manual/html/locsig.html (Last access: 05/2017)

15.Karpen, R. (1998), Space opcode Documentation. In: The Csound Manual
http://www.csounds.com/manual/html/space.html (Last access: 05/2017)

16.Malham, Dave: “El espacio acústico tridimensional y su simulación por medio de Am-
bisonics”. In: Basso, Di Liscia and Pampin (Eds.): Música y espacio: ciencia, tecnología
y estética, Editorial de la Universidad Nacional de Quilmes, pp. 161–202 (2010).

17.Moore, F. R.: An introduction to the mathematics of DSP, Part II. CMJ 2(2):38–60,
MIT Press, USA (1978).

18.Moorer, J. A.: The use of the Phase Vocoder in Computer Music Applications. JAES,
26(1/2): 42-45 (1978).

19.Noisternig, M., Musil, T., Sontacchi, A., Höldrich, R.: A 3d real time rendering engine
for binaural sound reproduction. In Proceedings of the 2003 International Conference
on Auditory Display, Boston, MA, USA, 6-9 (2003). (Last access: 05/2017)
https://www.researchgate.net/publication/228747180_A_3D_real_time_Rendering_
Engine_for_binaural_Sound_Reproduction (Last access: 05/2017)

20.Pampin, J., Di Liscia, P., Moss, P., Norman, A.: ATS user Interfaces. In: Proceedings
of the International Computer Music Conference, Miami University, USA (2004).

21.Pulkki, V.: Virtual sound source positioning using vector base amplitude panning.
JAES, 45(6) pp. 456–466 (1997).

22.Roads, C.: Microsound. The MIT Press, England (2004).
23.Serra, X. and Smith J. O. III: A Sound Analysis/Synthesis System Based on a Deter-

ministic plus Stochastic Decomposition, Computer Music Journal, 14(4), MIT Press,
USA (1990).

24.Trevino, J., Koyama, S., Sakamoto, S., Suzuki, Y.: Mixed-order Ambisonics encoding
of cylindrical microphone array signals. In Journal of Acoustic Science and Technol-
ogy, 35, 3, The Acoustical Society of Japan, (2014).

25.Varga, I.: Spat3d opcode Documentation, In: The Csound Manual.
http://www.csounds.com/manual/html/spat3d.html (Last access: 05/2017)

26.Wessel, D. and Risset, J.: Exploration of Timbre by Analysis and Resynthesis. In: The
Psichology of Music, D. Deutsch (Ed.), Academic Press. pp. 26–58 (1985).

	Front Page
	Title Page
	Index
	Preface
	Keynote Talks
	Victor Lazzarini. The 60 years leading to Csound 6.09
	Joachim Heintz. Don Quijote, the Island and the Golden Age
	Oscar Pablo Di Liscia. The ATS technique in Csound: theoretical background, present state and prospective
	Iain McCurdy. Csound – the Swiss Army Synthesiser
	Steven Yi. How and Why I Use Csound Today

	Conference papers
	Gleb Rogozinsky et al. Working with pch2csd – Clavia NM G2 to Csound Converter
	Guillermo Senna and Juan Nava Aroza. Daria: A New Framework for Composing, Rehearsing and Performing Mixed Media Music
	Hlöðver Sigurðsson. Interactive Csound coding with Emacs
	Georg Boenn. Chunking: A new Approach to Algorithmic Composition of Rhythm and Metre for Csound
	Michael Gogins. Interactive Visual Music with Csound and HTML5
	Oscar Pablo Di Liscia. Spectral and 3D spatial granular synthesis in Csound

